Answer:
C. 2.
Explanation:
The total reaction order of this reaction is second order (2). For a second order reaction ,the rate depends on two variable concentration terms which may or may not be same.
Given that:
Two reactants combine to form a product in the reaction A + B → C
The above reaction is bimolecular as two molecules are involved in the reaction.
If
and
are the concentrations of A and B respectively at any time t, then assuming that the reaction is of first order with respect to both A and B , the overall order is second and the reaction rate is given by:

where;
= specific rate constant for a second order reaction and becomes the rate of the reaction when both
and
are unity.
Answer:
Explanation:
Mechanical energy = Kinetic energy + Potential energy
We shall calculate mechanical energy at different points of time .
Time Kinetic energy Potential energy mechanical energy
0 0 4 4
2 2 2 4
4 4 0 4
6 2 2 4
8 0 4 4
10 2 2 4
and so on ........
Hence we see that total mechanical energy is constant at the value of 4
at all time .
Answer:
The answer is option b.
Explanation:
Amplitude is the distance apart each wave is.
The question is incomplete, the remaining part of the question is
Which of the above occurs for each of the following circumstances?
A 50-milliliter sample of a 2-molar Cd(NO3)2 solution is added to the left beaker.
Answer:
Voltage decreases but remains > zero.
Explanation:
Given the balanced redox reaction equation:
2Ag^+(aq) + Cd(s) ---------------> 2 Ag(s) + Cd^2+(aq)
Concentration affects the cell voltage according to Nernst equation. Change in concentration must lead to a change in cell Voltage.
As the concentration of the Cd(NO3)2 solution is increased, voltage decreases because of the increase in the concentration values but voltages remains above zero.