Answer:
C) It has a constant average kinetic energy
Explanation:
The average kinetic energy of the particles in a gas is directly proportional to the temperature of the gas, according to the equation.
k is the Boltzmann's constant
T is the absolute temperature of the gas
Therefore, temperature of a gas is a measure of the average kinetic energy of the particles.
In this problem, we are told that the gas is at constant temperature (and volume): therefore, according to the previous equation, this means that the average kinetic energy is also constant.
Answer:
The ΔG° is 29 kJ and the reaction is favored towards reactant.
Explanation:
Based on the given information, the ΔH°rxn or enthalpy change is 41.2 kJ, the ΔS°rxn or change in entropy is 42.1 J/K or 42.1 * 10⁻³ kJ/K. The temperature given is 289 K. Now the Gibbs Free energy change can be calculated by using the formula,
ΔG° = ΔH°rxn - TΔS°rxn
= 41.2 kJ - 289 K × 42.1 × 10⁻³ kJ/K
= 41.2 kJ - 12.2 kJ
= 29 kJ
As ΔG° of the reaction is positive, therefore, the reaction is favored towards reactant.
Answer:
5 mg
Explanation:
If one half life is 4 hours, then 3 half lives is 12 hours.
This means that the sample will decay to 1/8 of its original amount.
So, the answer is 40(1/8) = 5 mg.
○ c. ○
◘
because a Research bias, also called experimenter bias, is a process where the scientists performing the research influence the results, in order to portray a certain outcome.
◘
hope that helped ♥
Answer:
10/9
Explanation:
First, let's convert 1/3 and 7/9 so that the have the same denominator. To do this let's find the least common multiple of 3 and 9.
List the multiples of 3 and 9:
3: 3, 9
9: 9
They have a least common multiple of 9
We need to convert 1/3 so it has a denominator of 9:
1/3*3/3 (we can multiply it by 3/3 because any number over itself is 1) = 3/9
s-3/9=7/9
Add 3/9 to both sides to isolate s
s=10/9