The correct answer is option A. Energy cannot be created during an ordinary chemical reaction. There is no such thing as an ordinary chemical reaction. Energy cannot be created or destroyed this is according to the law of conservation of energy. It can only be transformed from one form to another form.
Is there a picture? If not then it’s probably precipitate
<h3>Answer:<u><em>What organism is responsible for the cycling of nitrogen?</em></u></h3><h3><em><u /></em></h3><h3>Explanation:<u><em>Bacteria</em></u></h3><h3><u><em>Bacteria play a key role in the nitrogen cycle.</em></u></h3><h3><u><em>Some species of nitrogen-fixing bacteria are free-living in soil or water, while others are beneficial symbionts that live inside of plants.</em></u></h3><h3><em><u /></em></h3>
- if the compound is made of just two elements, if one is a metal (ie belongs to any of groups 1, 2 or 3) and the other element a non metal, (ie belongs to group 5, 6 or 7) then the compound is most likely to be an ionic compound. For example NaCl, MgO
- If the compound is made of identical non metalic elements as in O2, Cl2 then the compound is covalent
- If the compoud is made of just two elements that are both non metals such as in SO2, CO, NO, CCl4, the compound is covalent
- If the compound is made up of more than two elements, such as in HNO3, Na2CO3, CuSO4.5H2O, you may need to break the compound into dissociating parts. You will see that, the compounds are ionic.
- Hydrocarbons, compounds containing only hydrogen and carbon of varying molecular size are all covalent. Examples are C2H6, C2H4, C2H2
Note that there could be some little exceptions to the examples given. Mostly with first members of every group because of their small size which make them show substantial deviations from group behavior. For example HCl is covalent not ionic.
The answer is: volume of ammonia gas is 7.4 L.
Chemical reaction: 6NO + 4NH₃ → 5N₂ + 6H₂O.
m(NO) = 15 g; mass of nitrogen(II) oxide.
M(NO) = 30 g/mol; molar mass of nitrogen(II) oxide.
V(NH₃) = ?
n(NO) = 15 g ÷ 30 g/mol.
n(NO) = 0.5 mol; amount of nitrogen(II) oxide.
From chemical reaction: n(NO) : n(NH₃) = 6 : 4.
0.5 mol : n(NH₃) = 6 : 4.
n(NH₃) = 0.33 mol; amount of ammonia.
Vm = 22.4 L/mol; molar volume at STP.
V(NH₃) = 0.33 mol · 22.4 L/mol..
V(NH₃) = 7.4 L.