Answer:
0.54g of Cr
Explanation:
Current (I) = 10A
Time (t) = 100s
Molecular mass of Cr = 51.996 amu
Faraday's first law of electrolysis states that
The mass of the substance (m) of a given substance deposited at an electrode is directly proportional to the quantity of electricity or charge (Q) passed
m = nQ
M = mass of the substance
n = electrochemical constant
Q = charge passed through it
Q = IT
Q = (10 * 100) = 1000C
1 moles = molarmass = Faraday's constant (96500C)
Molar mass = Faraday's constant (96500C)
51.996 g = 96500C
How many grams will be liberated with 1000C
51.996g = 96500C
Xg = 1000C
X = (1000 * 51.996) / 96500
X = 51996 / 96500
X = 0.5388g = 0.54 g of Cr will be deposited
A. Heat because it does not take up space.
342.14 g/mol
Molar mass of Al= 26.98
Molar mass of S=32.06
Molar mass of O=16.00
(26.98)2+(32.06+(16.00×4))3=342.14