To solve this problem we will apply the concepts related to the conservation of momentum. Momentum can be defined as the product between mass and velocity. We will depart to facilitate the understanding of the demonstration, considering the initial and final momentum separately, but for conservation, they will be later matched. Thus we will obtain the value of the mass. Our values will be defined as




Initial momentum will be


After collision

Final momentum


From conservation of momentum

Replacing,





Answer:
Force's magnitude
Direction: down (towards the center of the Earth)
Explanation:
Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation:
in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.
Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)
The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

Answer:
Required energy Q = 231 J
Explanation:
Given:
Specific heat of copper C = 0.385 J/g°C
Mass m = 20 g
ΔT = (50 - 20)°C = 30 °C
Find:
Required energy
Computation:
Q = mCΔT
Q = 20(0.385)(30)
Required energy Q = 231 J