Answer:
fundamental frequency of pipe will be equal to 74 Hz
Explanation:
We have given for a particular organ pipe two adjacent frequency are 296 Hz and 370 Hz
Speed of the sound in air is 343 m/sec
We have to find the fundamental frequency for the pipe
Fundamental frequency will be equal to difference of the two adjacent frequency
So fundamental frequency = 370 - 296 = 74 Hz
So fundamental frequency of pipe will be equal to 74 Hz
You should put when you will leave, where you will be, and what time you will get back.
This happens<span> at the boiling </span>temperature<span> of every substance that can vaporize. At the boiling </span>temperature<span>, adding </span>heat<span> energy converts the liquid into a gas WITHOUT RAISING THE </span>TEMPERATURE<span>. Adding </span>heat<span> to a boiling liquid is an important exception to general rule that more </span>heat<span> makes a higher </span>temperature<span>.</span>
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Explanation:
You need two, maybe three things - something that's vibrating, a medium for those vibrations to propagate in, and a listener to hear it or recording equipment to pick it up