1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
3 years ago
10

What is the primary way that a metamorphic rock form

Physics
1 answer:
Virty [35]3 years ago
5 0
Metamorphic rocks form from the alteration of other rocks through pressure and temperature induced changes in the minerals.
You might be interested in
Question 4 of 10 (1 point) Jump to Question: Choose the word that best completes this sentence. A personal fall arrest system is
lisabon 2012 [21]
B
is the most logical answer to me
6 0
3 years ago
Read 2 more answers
Finding the spring constant as shown, spring 3, which has an unknown spring constant k3, replaces spring 2. the mass of the weig
nevsk [136]
Replaces spring 2. the mass of the weight and pulley are unchanged: m=5.8 kg and mp=1.7 kg
6 0
4 years ago
What is the importance of the x- y- Cartesian coordinate system in motion of an object in two dimensions?
ArbitrLikvidat [17]

Answer:

To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant velocity means motion in a straight line at a constant speed.

Explanation:

Velocity is defined as the rate of change of position with respect to time, which may also be referred to as the instantaneous velocity to emphasize the distinction from the average velocity. In some applications the "average velocity" of an object might be needed, that is to say, the constant velocity that would provide the same resultant displacement as a variable velocity in the same time interval, v(t), over some time period Δt. Average velocity can be calculated as:

{\displaystyle {\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.}{\boldsymbol {\bar {v}}}={\frac {\Delta {\boldsymbol {x}}}{\Delta {\mathit {t}}}}.

The average velocity is always less than or equal to the average speed of an object.

In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.

{\displaystyle {\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,}{\boldsymbol {\bar {v}}}={1 \over t_{1}-t_{0}}\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt,

where we may identify

{\displaystyle \Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt}\Delta {\boldsymbol {x}}=\int _{t_{0}}^{t_{1}}{\boldsymbol {v}}(t)\ dt

and

{\displaystyle \Delta t=t_{1}-t_{0}.}\Delta t=t_{1}-t_{0}.

Instantaneous velocity

{\displaystyle {\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.}{\boldsymbol {v}}=\lim _{{\Delta t}\to 0}{\frac {\Delta {\boldsymbol {x}}}{\Delta t}}={\frac {d{\boldsymbol {x}}}{d{\mathit {t}}}}.

From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, x. In calculus terms, the integral of the velocity function v(t) is the displacement function x(t).

{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {x}}=\int {\boldsymbol {v}}\ d{\mathit {t}}.}

Since the derivative of the position with respect to time gives the change in position (in metres) divided by the change in time (in seconds), velocity is measured in metres per second (m/s). Although the concept of an instantaneous velocity might at first seem counter-intuitive, it may be thought of as the velocity that the object would continue to travel at if it stopped accelerating at that moment.

Relationship to acceleration

Although velocity is defined as the rate of change of position,

{\displaystyle {\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.}{\boldsymbol {a}}={\frac {d{\boldsymbol {v}}}{d{\mathit {t}}}}.

From there, we can obtain an expression for velocity as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}{\displaystyle {\boldsymbol {v}}=\int {\boldsymbol {a}}\ d{\mathit {t}}.}

Constant acceleration

{\displaystyle {\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t}{\boldsymbol {v}}={\boldsymbol {u}}+{\boldsymbol {a}}t

with v as the velocity at time t and u as the velocity at time t = 0. By combining this equation with the suvat equation x = ut + at2/2, i

{\displaystyle {\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}}{\boldsymbol {x}}={\frac {({\boldsymbol {u}}+{\boldsymbol {v}})}{2}}{\mathit {t}}={\boldsymbol {\bar {v}}}{\mathit {t}}.

{\displaystyle v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}}v^{2}={\boldsymbol {v}}\cdot {\boldsymbol {v}}=({\boldsymbol {u}}+{\boldsymbol {a}}t)\cdot ({\boldsymbol {u}}+{\boldsymbol {a}}t)=u^{2}+2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}

{\displaystyle (2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}}(2{\boldsymbol {a}})\cdot {\boldsymbol {x}}=(2{\boldsymbol {a}})\cdot ({\boldsymbol {u}}t+{\frac {1}{2}}{\boldsymbol {a}}t^{2})=2t({\boldsymbol {a}}\cdot {\boldsymbol {u}})+a^{2}t^{2}=v^{2}-u^{2}

{\displaystyle \therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})}\therefore v^{2}=u^{2}+2({\boldsymbol {a}}\cdot {\boldsymbol {x}})

4 0
3 years ago
A 40 kg boy is moving upwards upwards in a lift with an acceleration of 2 m /s ^2 what would be the weight felt by him if measuu
neonofarm [45]

Answer:

<h2> 48kg</h2>

f = ma \\

w \:  =  \frac{f}{g}  \\

Explanation:

f \:  = ma \\ f - mg = ma \\ f = ma + mg \\ f = 40 \times 2 + 40 \times 10 \\ f = 480

w =  \frac{f}{g}  \\w =   \frac{480}{10}  \\ w = 48kg

5 0
3 years ago
Eleven wa=eighs 47 kg. her height is 1.63 m. what is her bmi
valentinak56 [21]

Answer:

17.7kg/m^{2}

Explanation:

                       BMI =

                             =  \frac{weight (kg)}{height  (m)   .   height (m)}

                             = 47kg/(1.63m×1.63m)

                             = 17.689kg/m^{2}

                             ≈ 17.7kg/m^{2}

6 0
3 years ago
Other questions:
  • A wire has a resistance of 27.2 ohms. It is melted down, and from the same volume of metal a new wire is made that is 3 times lo
    5·1 answer
  • Current flowing in a circuit depends on two variables. Identify these variables and their relationship to current.
    11·2 answers
  • A cyclist rode at an average speed of 20 mph for 15 miles. How long was the ride?
    9·1 answer
  • Find the density of a planet with a radius of 8000 m if the gravitational acceleration for the planet, gp, has the same magnitud
    7·1 answer
  • Why can objects be made to float in a magnetic field?
    8·1 answer
  • Why is it important that a finger be wet<br> before it is touched to a hot clothes iron?
    11·1 answer
  • Two points charge of 4\mu C and 2\mu C are placed at theopposite corners of a rectangle. What is the potential difference Va- Vb
    13·1 answer
  • The time lag between education of a muscle cell and the beginning of contraction is known as the ______
    8·1 answer
  • The reaction K + H2O ⟶ KOH + H2 is an example of?DecompositionSynthesisDouble ReplacementSingle Replacement
    11·1 answer
  • What do astronomers use to calculate the age of the universe? Select three options. Dark energy the age of rocks on Earth the ag
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!