1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
11

The reaction K + H2O ⟶ KOH + H2 is an example of?DecompositionSynthesisDouble ReplacementSingle Replacement

Physics
1 answer:
tigry1 [53]3 years ago
7 0

Answer:

the answer in this case would be single displacement reaction

You might be interested in
A 1.2 x10 3 kilogram automobile in motion strikes a 1.0 x 10 -4 kilogram insect as a result the insect is accelerated at a rate
Mariana [72]
According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:
F=ma
where F is the magnitude of the force, m is the mass of the object and a its acceleration.

In this problem, the object is the insect, with mass m=1.0 \cdot 10^{-4} kg. The acceleration of the insect is a=1.0 \cdot 10^2 m/s^2, therefore we can calculate the force exerted by the car on the insect:
F=ma=(1.0 \cdot 10^{-4} kg)(1.0 \cdot 10^2 m/s^2)=0.01 N

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
6 0
3 years ago
Can someone tell me if I’m correct or not
Anika [276]
You are correct because nothing is being done to the cake
6 0
3 years ago
Read 2 more answers
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supp
IRINA_888 [86]

Complete question :

NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts the supply storage area of the lunar outpost where gravity is 1.63m/s/s can only support 1 x 10 over 5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost?

Answer:

601000 N

Explanation:

Given that :

Acceleration due to gravity at lunar outpost = 1.6m/s²

Supported Weight of supplies = 1 * 10^5 N

Acceleration due to gravity on the earth surface = 9.8m/s²

Maximum weight of supplies as measured on EARTH :

Ratio of earth gravity to lunar post gravity:

(Earth gravity / Lunar post gravity) ;

(9.8 / 1.63) = 6.01

Hence, maximum weight of supplies as measured on EARTH should be :

6.01 * (1 × 10^5)

6.01 × 10^5

= 601000 N

3 0
3 years ago
I need the solution to this
posledela

Answer:

He could jump 2.6 meters high.

Explanation:

Jumping a height of 1.3m requires a certain initial velocity v_0. It turns out that this scenario can be turned into an equivalent: if a person is dropped from a height of 1.3m in free fall, his velocity right before landing on the ground will be v_0. To answer this equivalent question, we use the kinematic equation:

v_0 = \sqrt{2gh}=\sqrt{2\cdot 9.8\frac{m}{s^2}\cdot 1.3m}=5.0\frac{m}{s}

With this result, we turn back to the original question on Earth: the person needs an initial velocity of 5 m/s to jump 1.3m high, on the Earth.

Now let's go to the other planet. It's smaller, half the radius, and its meadows are distinctly greener. Since its density is the same as one of the Earth, only its radius is half, we can argue that the gravitational acceleration g will be <em>half</em> of that of the Earth (you can verify this is true by writing down the Newton's formula for gravity, use volume of the sphere times density instead of the mass of the Earth, then see what happens to g when halving the radius). So, the question now becomes: from which height should the person be dropped in free fall so that his landing speed is 5 m/s ? Again, the kinematic equation comes in handy:

v_0^2 = 2g_{1/2}h\implies \\h = \frac{v_0^2}{2g_{1/2}}=\frac{25\frac{m^2}{s^2}}{2\cdot 4.9\frac{m}{s^2}}=2.6m

This results tells you, that on the planet X, which just half the radius of the Earth, a person will jump up to the height of 2.6 meters with same effort as on the Earth. This is exactly twice the height he jumps on Earth. It now all makes sense.

6 0
3 years ago
What force, in newtons, must you exert on the balloon with your hands to create a gauge pressure of 62.5 cm H2O, if you squeeze
yulyashka [42]

Answer:54.70 N

Explanation:

Given

Gauge Pressure of 62.5 cm of H_2O

i.e. h=62.5 cm =0.625 m

Effective area A=51 cm^2

initial Pressure= 1 atm=101.325 kPa

Gauge Pressure P=\rho gh

\rho =density\ of\ water =1000 kg/m^3

P_{gauge}=1000\times 9.8\times 0.625=5.937 kPa

Force creates a pressure of P_1 which will be equal to Gauge Pressure

P_1=\frac{F}{A}

P_1=P_{gauge}

\frac{F}{A}=5.937 kPa

F=5.937\times 51\times 10^{-4}\times 10^3

F=30.27 N

6 0
4 years ago
Other questions:
  • Which characteristics can be used to differentiate star systems? Check all that apply.
    13·2 answers
  • Which component of the atom has the least mass?
    11·2 answers
  • A gasoline engine transform approximately 34 percent of the fuel's chemical energy into mechanical energy. if energy is conserve
    15·1 answer
  • F = 50 N<br> m = 72 kg<br> m/s2
    15·1 answer
  • Select all that apply.
    10·2 answers
  • What 3 factors should be considered when designing a lighting rod?
    10·1 answer
  • This planet orbit around the sun cuts across the path of another planet.
    10·1 answer
  • A 2 kg ball of clay moving at 35 m/s strikes a 10 kg box initially at rest. What is the velocity of the box after the collision?
    9·1 answer
  • A planet has two moons, Moon A and Moon B, that orbit at different distances from the planet's center, as shown. Astronomerscoll
    9·2 answers
  • Scott travels north 3 Km and then goes west 3 Km before coming straight
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!