<h3>
Answer:</h3>
0.012 dekameters (dkm)
<h3>
Explanation:</h3>
<u>We are given;</u>
Required to identify the measurements that is not equivalent to 120 cm.
- Centimeters are units that are used to measure length together with other units such as kilometers(km), meters (m), millimeters (mm), dekameters (dkm), etc.
- These units can be inter-converted to one another using suitable conversion factors.
- To do this, we are going to have a table showing the suitable conversion factor from one unit to another.
Kilometer (km)
10
Decimeter (Dm)
10
Hectometer (Hm)\
10
Meter (m)
10
Dekameter (dkm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore;
To convert cm to km
Conversion factor is 10^5 cm/km
Thus;
120 cm = 120 cm ÷ 10^5 cm/km
= 0.0012 km
To convert cm to dkm
Conversion factor is 10 cm/dkm
Therefore,
120 cm = 120 cm ÷ 10 cm/dkm
= 12 dkm
To convert cm to m
The suitable conversion factor is 10^2 cm/m
Thus,
120 cm = 120 cm ÷ 10^2 cm/m
= 1.2 m
To convert cm to mm
Suitable conversion factor is 10 mm/cm
Therefore;
120 cm = 120 cm × 10 mm/cm
= 1200 mm
Therefore, the measurement that is not equal to 120 cm is 0.012 dkm
Answer:
Different isotopes of the same element have the same number of protons in their atomic nuclei but differing numbers of neutrons. Radioisotopes are radioactive isotopes of an element. They can also be defined as atoms that contain an unstable combination of neutrons and protons, or excess energy in their nucleus.
I think the correct answer from the choices listed above is option B. The reactants calcium sulfide and sodium sulfate will react and form a precipitate which is calcium sulfate since it is only slightly soluble in aqueous solution. Hope this answers the question.
Answer:
1)The molar mass of an atom is simply the mass of one mole of identical atoms. However, most of the chemical elements are found on earth not as one isotope but as a mixture of isotopes, so the atoms of one element do not all have the same mass.
2)Equally important is the fact that one mole of a substance has a mass in grams numerically equal to the formula weight of that substance. Thus, one mole of an element has a mass in grams equal to the atomic weight of that element and contains 6.02 X 1023 atoms of the element.