Answer:
C. Yes, if each sample contains 6.02 x 10²³ atoms.
Explanation:
It is possible for each sample to contain 1 mole of each sample if and only if each of the sample if made up of 6.02 x 10²³ atoms.
6.02 x 10²³ atoms is the Avogadro's number. This number is equivalent to a mole of a substance.
- If the amount of matter in the given substance is at least one mole, it is possible that they are made up of one mole each of each substance.
- If they contain lesser amount of atoms, then it is not up to one mole of substance.
- But if it is greater, then, we can have even more than one mole of substance.
A mole is simply a unit of measurement and it is equivalent to 6.02 x 10²³ atoms.
Answer:
52.8 g of O2.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
4Al + 3O2 —> 2Al2O3
From the balanced equation above,
4 moles of Al reacted with 3 moles of O2 to produce 2 moles of Al2O3
Next, we shall determine the number of mole of O2 needed to react with 2.2 moles of Al. This can be obtained as follow:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O2.
Therefore, 2.2 moles of Al will react with = (2.2 × 3)/4 = 1.65 moles of O2.
Thus, 1.65 moles of O2 is needed for the reaction.
Finally, we shall determine the mass of O2 needed as shown below:
Mole of O2 = 1.65 moles
Molar mass of O2 = 2 × 16= 32 g/mol
Mass of O2 =?
Mole = mass/Molar mass
1.65 = mass of O2 /32
Cross multiply
Mass of O2 = 1.65 × 32
Mass of O2 = 52.8 g
Therefore, 52.8 g of O2 is needed for the reaction.
A solvent is something that can have something else dissolved within it and turn into a homogenous solution, while the solute is that something else that can be dissolved into the solvent. Usually, the solvent is found in greater amount because most (except for rare cases) solvents have a saturation point that is below the equal-mass point.
The system is not at equilibrium.
The reaction will proceed to the right to attain the equilibrium.
Let's consider the following reaction.
2 NOBr(g) ⇌ 2 NO(g) + Br₂(g)
The pressure equilibrium constant (Kp) is 60.6. To determine if the system is at equilibrium when the pressure of each component is 1.75 atm, we have to calculate the reaction quotient (Q) and compare it with Kp.
Q = [NO]².[Br₂] / [NOBr]²
Q = (1.75)².(1.75) / (1.75)²
Q = 1.75
Since Q ≠ Kp, the system is not at equilibrium.
Since Q < Kp, the reaction will proceed to the right to attain the equilibrium.
To know more about equilibrium.
brainly.com/question/517289
#SPJ4
Glass is a hard substance that consists of sand, soda ash and limestone. When these substances are heated together, their molecules bond to form the substance we know as glass. We use glass for many purposes, and glass bottles have become a popular method of storage, as well as being used in chemical experiments.