Answer:
Step-by-step explanation:
The geometric distribution represents "the number of failures before you get a success in a series of Bernoulli trials. This discrete probability distribution is represented by the probability density function:"
Let X the random variable that measures the number os trials until the first success, we know that X follows this distribution:
In order to find the expected value E(1/X) we need to find this sum:

Lets consider the following series:
And let's assume that this series is a power series with b a number between (0,1). If we apply integration of this series we have this:
(a)
On the last step we assume that
and
, then the integral on the left part of equation (a) would be 1. And we have:

And for the next step we have:

And with this we have the requiered proof.
And since
we have that:
A. x=34
2 x 17 = 34
34/2 = 17
I’ll assume the c is b. (1/2) x (5) x (2) x (2) is 10
1. 2/3. Flip 2/3 into 3/2 and then multiply and simplify.
2. 30/91. Flip 7/6 to 6/7 and then multiply. You cannot simplify the fraction.
3. 26/27. Flip 9/10 to 10/9 and then multiply. You cannot simplify the fraction.
4. 44.2. Multiply it as if there was no decimal. Then count the number of digits after the decimal in each factor. Then put the same number of digits behind the decimal in the product.
5. 98.75. Multiply it as if there was no decimal. Then count the number of digits after the decimal in each factor. Then put the same number of digits behind the decimal in the product.
6. 3.36. Multiply it as if there was no decimal. Then count the number of digits after the decimal in each factor. Then put the same number of digits behind the decimal in the product.
7. 2. Multiply the divisor by as many 10’s as necessary until you get a whole number. Remember to multiply the dividend by the same number of 10’s. Then divide it normally.
8. 10.93 (rounded). Multiply the divisor by as many 10’s as necessary until you get a whole number. Remember to multiply the dividend by the same number of 10’s. Then divide it normally. I rounded it to the hundredth.
Hope this helps!