Answer:
The liquid boils.
Explanation:
Vapor pressure is simply defined as the pressure exerted on a substance (solid/liquid) by the vapor of the substance collected just at the top of the surface of the substance. In concise words, it is the pressure of Vapor that is in contact with its solid or liquid state.
For a liquid, it is the pressure of the Vapor gathering at the top of the surface of the liquid.
When this Vapor pressure matches the external pressure, the temperature stays constant and the molecules of the liquid all through the liquid can gain enough energy, rise to the surface of the liquid and break free in gaseous form; thereby, boiling.
The definition of boiling point basically explains that it is the point at which temperature stays constant, and the vapour pressure of the liquid matches the atmospheric/external pressure around the liquid and its liquid molecules change into vapor.
This is why liquids boil faster at higher altitudes; the atmospheric pressure at higher altitudes is reduced, hence, the temperature at which liquid boils at this high altitude is normally lower than its known boiling point temperature.
It is also why food cooks to a temperature higher than the boiling point of water in a pressure cooker/pot. The added pressure ensures that the cooking water boils at temperatures higher than its boiling point; thereby exposing the cooking ingredients to a higher temperature, leading to faster cooking.
Hence, it is obvious why boiling is the answer to this question.
Yes, Benzylamine is miscible, meaning it is soluble at all amounts.
1 mole of N2 produces 2 moles of NH3
OR...
14 x 2 grams of N2 produces 2(14 +3) grams of NH3
1 gram of N2 produces 34/28 grams of NH3
therefore, 56 grams produce (34/28 )x 56 =68 grams of NH3
the answer thus would be 68 grams of NH3
Answer:
Explanation:
So we take the given quotient:
ρ=176⋅g4⋅cm×4⋅cm×4⋅cm = 176⋅g64⋅cm3 = ??g⋅cm−3.
Would the cube float or sink in water? Why
Answer: A. Diethyl ether has a very low miscibility in wate
The fact that the diethyl ether is miscible or not in water <u>does not imply a ris</u>k for the person who is working with this reagent in the laboratory.
However, the fact that diethyl ether forms explosive peroxides and that it is highly flammable implies that there is a risk of explosion when exposed to air and sunlight. On the other hand, as option C mentions, if a person inhales a large quantity of this reagent, they may lose consciousness and suffer some injury when fainting, due to the powerful anesthetic effect of this reagent.<u> In conclusion, options B, C and D are statements that imply safety problems associated with the use of diethyl ether in the laboratory, while option A does not imply it.</u>