1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
13

Formula needed for Pb2+Cl-

Chemistry
1 answer:
kykrilka [37]3 years ago
4 0
You need two Cl to match the 2+ charge on Pb, so it would be PbCl2
You might be interested in
The molality is temp independent whereas molarity is temperature dependent. Justify.
Elza [17]
Molality is obtained by dividing the number of moles of solute by the mass in kilogram of the solvent. None of the dimensions is dependent in temperature. On the other hand, molarity is obtained by dividing the number of moles of solute by the volume in liters of the solution. Volume is temperature dependent. 
6 0
3 years ago
Identifying map types
Darina [25.2K]

Answer:

Political Map. A political map shows the state and national boundaries of a place. ...

Explanation:

3 0
2 years ago
The following reaction shows sodium carbonate reacting with calcium hydroxide.
velikii [3]

Ans: 15.1 grams

Given reaction:

Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3

Mass of Na2CO3 = 20.0 g

Molar mass of Na2CO3 = 105.985 g/mol

# moles of Na2CO3 = 20/105.985 = 0.1887 moles

Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH

# moles of NaOH produced = 0.1887*2 = 0.3774 moles

Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol

Mass of NaOH produced = 0.3774*39.996 = 15.09 grams


5 0
2 years ago
What mass of Fe(OH)3 is produced when 35 mL of 0.250 M Fe(NO3)3 solution is mixed with 55 mL of a 0.180 M
Zina [86]

Answer:

0.35 g.

Explanation:

We'll begin by calculating the number of mole of Fe(NO3)3 in 35 mL of 0.250 M Fe(NO3)3 solution.

This is illustrated below:

Molarity of Fe(NO3)3 = 0.250 M

Volume = 35 mL = 35/1000 = 0.035 L

Mole of Fe(NO3)3 =?

Molarity = mole /Volume

0.250 = mole of Fe(NO3)3 / 0.035

Cross multiply

Mole of Fe(NO3)3 = 0.25 x 0.035

Mole of Fe(NO3)3 = 8.75×10¯³ mole

Next, we shall determine the number of mole of KOH in 55 mL of 0.180 M

KOH solution. This is illustrated below:

Molarity of KOH = 0.180 M

Volume = 55 mL = 55/1000 = 0.055 L

Mole of KOH =.?

Molarity = mole /Volume

0.180 = mole of KOH /0.055

Cross multiply

Mole of KOH = 0.180 x 0.055

Mole of KOH = 9.9×10¯³ mole.

Next, we shall write the balanced equation for the reaction. This is given below:

3KOH + Fe(NO3)3 —> Fe(OH)3 + 3KNO3

From the balanced equation above,

3 moles of KOH reacted with 1 mole of Fe(NO3)3 to produce 1 mole of Fe(OH)3.

Next, we shall determine the limiting reactant. This can be obtained as follow:

From the balanced equation above,

3 moles of KOH reacted with 1 mole of Fe(NO3)3.

Therefore, 9.9×10¯³ mole of KOH will react with = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(NO3)3.

From the above illustration, we can see that only 3.3×10¯³ mole out of 8.75×10¯³ mole of Fe(NO3)3 given is needed to react completely with 9.9×10¯³ mole of KOH.

Therefore, KOH is the limiting reactant and Fe(NO3)3 is the excess reactant.

Next, we shall determine the number of mole of Fe(OH)3 produced from the reaction.

In this case, we shall use the limiting reactant because it will give the maximum yield of Fe(OH)3 as all of it is consumed in the reaction.

The limiting reactant is KOH and the mole of Fe(OH)3 produce can be obtained as follow:

From the balanced equation above,

3 moles of KOH reacted to produce 1 mole of Fe(OH)3.

Therefore, 9.9×10¯³ mole of KOH will react to produce = (9.9×10¯³ x 1)/3 = 3.3×10¯³ mole of Fe(OH)3.

Finally, we shall convert 3.3×10¯³ mole of Fe(OH)3 to grams. This can be obtained as follow:

Molar mass of Fe(OH)3 = 56 + 3(16 + 1) = 56 + 3(17) = 107 g/mol

Mole of Fe(OH)3 = 3.3×10¯³ mole

Mass of Fe(OH)3 =?

Mole = mass /Molar mass

3.3×10¯³ = Mass of Fe(OH)3 / 107

Cross multiply

Mass of Fe(OH)3 = 3.3×10¯³ x 107

Mass of Fe(OH)3 = 0.3531 ≈ 0.35 g.

Therefore, 0.35 g of Fe(OH)3 was produced from the reaction.

8 0
2 years ago
A student dissolves equal amounts of salt in equal amounts of warm water, room-temperature water, and ice water. Which result is
Tanya [424]

doesnt salt desolve ice? so wouldn't the salt dissolve in the ice water?

6 0
2 years ago
Read 2 more answers
Other questions:
  • Number of moles of Cl2 molecules in a sample that contains 7.12×1025 molecules of Cl2.
    12·1 answer
  • Calculate the density of a substance that has a mass of 200 g and volume of 228 ml​
    8·1 answer
  • The concentration of ionic substances is important for the heart to beat. Your heart responds to electrical impulses that travel
    13·2 answers
  • Find the temperature from 150ml cylinder containing 0.75 moles gas at 153kpa.
    15·1 answer
  • If the volume of a cylinder is 84,300 cubic centimeters then how many millimeters is this equal to
    7·1 answer
  • Explain how information from stimuli becomes a memory
    10·1 answer
  • The Layers of the Earth video compared the layers of the earth with what type of
    5·1 answer
  • 02. Two great pe birds are morati Both birth have a ne
    10·2 answers
  • Please help! its due at the end of class.
    10·1 answer
  • Milk (pH 6.7)
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!