Explanation:
A period 3 element is one of the chemical elements in the third row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when the periodic table skips a row and a chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The third period contains eight elements: sodium, magnesium, aluminium, silicon, phosphorus, sulfur, chlorine, and argon. The first two, sodium and magnesium, are members of the s-block of the periodic table, while the others are members of the p-block. All of the period 3 elements occur in nature and have at least one stable isotope.[1]
Answer:
Exothermic reactions feel hot
Endothermic reactions feel cool
Explanation:
In an exothermic reaction, heat is given out by the system. The energy of the reactants is greater than that of the products hence the excess energy is given off as heat. The reaction vessel feels hot.
In an endothermic reaction, the energy of products is greater than that of the reactants hence energy is taken into the system and the reaction vessel feels cool.
Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.
Answer:
The approximate mass of beryllium is 9.0045 u.
Explanation:
Given data:
mass of helium= 4.002 u
mass of beryllium which is 2.25 times of mass of helium= ?
Solution:
we will multiply the mass of helium with 2.25 times,
4.002 u × 2.25 = 9.0045 u
so the mass of beryllium atom would be 9.0045 u.
Answer:
Elements only contain one type of atoms while compounds contain two or more types of atoms.
Explanation:
An example of an element is sodium --> Na (only Na atoms)
An example of a compound can be water --> H2O (contain H and O atoms)
*But the particles within a compound are all the same.