To solve this we use the
equation,
M1V1 = M2V2
where M1 is the concentration of the stock solution, V1 is the
volume of the stock solution, M2 is the concentration of the new solution and
V2 is its volume.
2.5 M x V1 = 1.0 M x .250 L
<span>V1 = 0.10 L or 100 mL of the 2.5 M HCl solution is needed
Hope this helps.</span>
Student B because it requires a hypothesis
Answer:
Option B
Explanation:
- For Option A the state is not changing but just has different look now.
- For Option B the state is changing from gas to liquid drops due to cold glass
- For Option C it hasn't changed state as both corn and flower is solid
- For Option D paper and ash are both solids
Therefore our answer must be Option B
Answer:
A and D are true , while B and F statements are false.
Explanation:
A) True. Since the standard gibbs free energy is
ΔG = ΔG⁰ + RT*ln Q
where Q= [P1]ᵃ.../([R1]ᵇ...) , representing the ratio of the product of concentration of chemical reaction products P and the product of concentration of chemical reaction reactants R
when the system reaches equilibrium ΔG=0 and Q=Keq
0 = ΔG⁰ + RT*ln Q → ΔG⁰ = (-RT*ln Keq)
therefore the first equation also can be expressed as
ΔG = RT*ln (Q/Keq)
thus the standard gibbs free energy can be determined using Keq
B) False. ΔG⁰ represents the change of free energy under standard conditions . Nevertheless , it will give us a clue about the ΔG around the standard conditions .For example if ΔG⁰>>0 then is likely that ΔG>0 ( from the first equation) if the temperature or concentration changes are not very distant from the standard conditions
C) False. From the equation presented
ΔG⁰ = (-RT*ln Keq)
ΔG⁰>0 if Keq<1 and ΔG⁰<0 if Keq>1
for example, for a reversible reaction ΔG⁰ will be <0 for forward or reverse reaction and the ΔG⁰ will be >0 for the other one ( reverse or forward reaction)
D) True. Standard conditions refer to
T= 298 K
pH= 7
P= 1 atm
C= 1 M for all reactants
Water = 55.6 M