Answer:
No.
Explanation:
No, individual particles do not move with the wave, it only oscillates back and forth its mean position. The particles in the medium transfer its energy to their neighboring particles and in that way the energy moves in the form of wave. The particles only vibrates on its means position instead of moving from one place to another. So we can conclude that Individual particles do not move with the wave.
Answer:
<u />
<u />
<u />
Explanation:
<u>1. Chemical balanced equation (given)</u>

<u>2. Mole ratio</u>

This is, 1 mol of NaOH will reacts with 1 mol of KHP.
<u />
<u>3. Find the number of moles in 72.14 mL of the base</u>



<u>4. Find the number of grams of KHP that reacted</u>
The number of moles of KHP that reacted is equal to the number of moles of NaOH, 0.007055 mol
Convert moles to grams:
- mass = number moles × molar mass = 0.007055mol × 204.23g/mol
You have to round to 3 significant figures: 1.44 g (because the molarity is given with 3 significant figures).
<u>5. Find the percentage of KHP in the sample</u>
The percentage is how much of the substance is in 100 parts of the sample.
The formula is:
- % = (mass of substance / mass of sample) × 100
- % = (1.4408g/ 1.864g) × 100 = 77.3%
The answer is A, good luck
The density of the unknown metal, given the data is 1.67 g/mL
<h3>What is density? </h3>
The density of a substance is simply defined as the mass of the subtance per unit volume of the substance. Mathematically, it can be expressed as
Density = mass / volume
With the above formula, we can determine the density of the unknown metal. Details below:
<h3>How to determine the density </h3>
- Mass of unknown metal = 20 - 0 = 20 g
- Volume of unknown metal = 12 - 0 = 12 mL
- Density of unknown metal =?
Density = mass / volume
Density of unknown metal = 20 / 12
Density of unknown metal = 1.67 g/mL
Thus, the density of unknown metal is 1.67 g/mL
Learn more about density:
brainly.com/question/952755
#SPJ1