Answer:
The play will be more appealing to a younger audience.
Explanation:
A younger audience will more likely appreciate current pop hits rather than classical score.
Answer:
lol thanks for the point btws! i really needed them for my math test questions have a good day btw! good vibes!
Explanation:
Answer: an electromagnetic wave of a frequency between about 104 and 1011 or 1012 Hz, as used for long-distance communication.
Explanation:
Answer:
See explanation and image attached
Explanation:
The standard cell potential at 298 K is given by;
E°cathode - E°anode
Hence;
E°cell = 0.34 V - (-0.76 V)
E°cell = 0.34 V + 0.76 V
E°cell = 1.1 V
To reduce Zn^2+ to Zn then Zn must be the cathode, hence;
E°cell = (-0.76 V) - 0.34 V
E°cell = -1.1 V
The boiling point of water at 1 atm is 100 degrees celsius. However, when water is added with another substance the boiling point of it rises than when it is still a pure solvent. This called boiling point elevation, a colligative property. The equation for the boiling point elevation is expressed as the product of the ebullioscopic constant (0.52 degrees celsius / m) for water), the vant hoff factor and the concentration of solute (in terms of molality).
ΔT(CaCl2) = i x K x m = 3 x 0.52 x 0.25 = 0.39 °C
<span> ΔT(Sucrose) = 1 x 0.52 x 0.75 = 0.39 </span>°C<span>
</span><span> ΔT(Ethylene glycol) = 1 x 0.52 x 1 = 0.52 </span>°C<span>
</span><span> ΔT(CaCl2) = 3 x 0.52 x 0.50 = 0.78 </span>°C<span>
</span><span> ΔT(NaCl) = 2 x 0.52 x 0.25 = 0.26 </span>°C<span>
</span>
Thus, from the calculated values, we see that 0.75 mol sucrose dissolved on 1 kg water has the same boiling point with 0.25 mol CaCl2 dissolved in 1 kg water.