The Law of Conservation of Energy
The distance is 30 km and the displacement is 22.4 km North East
Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁ ![ln[\frac{P_{1} }{P_{2} }]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7BP_%7B1%7D%20%7D%7BP_%7B2%7D%20%7D%5D)
= <em>mRT</em>₁
[∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039) ![ln[\frac{2.0}{1.0}]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7B2.0%7D%7B1.0%7D%5D)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> = 
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
Answer:
The pressure after passing the valve is 23,8 [Kpa] ( 0,234 atm) and the pressure drop is about 1,53 [Kpa]
Explanation:
We need to use the formula of bernoulli, in the attached image we can see the fluid throw the pipe, we also can calculate the velocity inside the pipe using the flow rate and the cross sectional area.
For this case, we don't use the elevation difference and therefore those terms can be cancelled.
When the area has reduced the velocity of the fluid is increased but there is a drop pressure through the valve.