1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
11

6. If a vehicle needs 5s to complete 15m. Find the mean speed of it?

Physics
1 answer:
Karolina [17]3 years ago
4 0

Answer:

3m/s

Explanation:

Time=5s

Distance =15m

Speed=distance/time

Putting the values

Speed=15m/5s

Speed=3m/s is the answer

Hope it will help you. :)

You might be interested in
A climber pulls herself 8 meters upwards with a force of 150 Newtons. If it takes her 16 seconds to cover the 8 meters, how much
mr Goodwill [35]

Answer:

 P = 75 W

Explanation:

given,

Distance, L = 8 m

Force,F = 150 N

Time, t = 16 s

Work by the climber

Work done = Force x displacement

W = F. L

W = 150 x 8

W = 1200 J

We know,

Power =\dfrac{Work\ done}{time}

P =\dfrac{1200}{16}

 P = 75 W

Hence, Power climber is using to climb is equal to 75 W.

3 0
3 years ago
The acceleration due to gravity on the surface of Venus is 8.83 m/s2. An object with a mass of 5.23 kg has what weight on Venus?
Marat540 [252]
Weight = m times g = 5.23 times 8.83 = 46.18 N
6 0
3 years ago
A flying saucer lifts the Physical Science building 10,000 ft into the air before discovering it is useless and discards the rem
scZoUnD [109]

Answer:

500000000 lbft/s

Explanation:

F = Force or weight = 1000000 lbf

s = Displacement = 10000 ft

t = Time taken = 20 seconds

Work done is given by

W=Fs\\\Rightarrow W=1000000\times 10000\\\Rightarrow W=10000000000\ lb-ft

Power is given by

P=\dfrac{W}{t}\\\Rightarrow P=\dfrac{10000000000}{20}\\\Rightarrow P=500000000\ lbft/s

One Saucer power is 500000000 lbft/s

7 0
3 years ago
The displacement of a 500 g mass, undergoing simple harmonic motion, is defined by the function :
Delicious77 [7]

The maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

<h3>What is simple harmonic motion?</h3>

Simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side.

Simple Harmonic Motion

The given equation of the simple harmonic motion is

x=3.5 sin (\frac{\pi }{2t} + \frac{5\pi }{4} )

Data;

ω = π/2

k = 1.254N/m

Solving this

\frac{dx}{dt} = -3.5 X \frac{\pi }{2} cos (\frac{x\pi t}{2}+\frac{5\pi }{4}  )

Let's calculate the maximum velocity.

V_{m} =\frac{3.5\pi }{2}

This is only possible when cos θ = -1

The maximum kinetic energy is

K_m =\frac{1}{2} mv^2 = \frac{1}{2} X \frac{500}{1000} X \frac{7^2\pi ^2}^{4} ^2

w^2 = \frac{k}{m} \\k = w^2m\\k = \frac{\pi ^2}{4} X \frac{500}{1000} \\k =1.254 N/m

Using the value of spring constant, we can find the maximum potential energy.

P.E =\frac{1}{2} k x^2\\P.E =\frac{1}{2} X 1.234 X 3.5^2 \\P.E = 7.56 J

The maximum potential energy is 7.56J

The maximum mechanical energy is equal to the sum of maximum potential energy and the maximum kinetic energy.

ME = K.E + P.E

ME = 7.56J

From the calculations above, the maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

Learn more on simple harmonic motion here;

brainly.com/question/15556430

#SPJ1

8 0
2 years ago
A photovoltaic panel of dimension 2 m × 4 m is installed on the roof of a home. The panel is irradiated with a solar flux of GS
Flura [38]

Answer:

(a) the electrical power generated for still summer day is 1013.032 W

(b)the electrical power generated for a breezy winter day is 1270.763 W

Explanation:

Given;

Area of panel = 2 m × 4 m, = 8m²

solar flux  GS = 700 W/m²

absorptivity of the panel, αS = 0.83

efficiency of conversion, η = P/αSGSA = 0.553 − 0.001 K⁻¹ Tp

panel emissivity , ε = 0.90

Apply energy balance equation to determine he electrical power generated;  

transferred energy + generated energy = 0

(radiation + convection) +  generated energy = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - \eta \alpha_s G_s = 0

[\alpha_sG_s-\epsilon \alpha(T_p^4-T_s^4)]-h(T_p-T_\infty) - (0.553-0.001T_p)\alpha_s G_s

(a) the electrical power generated for still summer day

T_s = T_{\infty} = 35 ^oC = 308 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_1^4-308^4)]-10(T_p_1-308) - (0.553-0.001T_p_1)0.83*700 = 0\\\\3798.94-5.103*10^{-8}T_p_1^4 - 9.419T_p_1 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_1\\\\T_p_1 = 335.05 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_1)\alpha_s G_s A \\\\P = (0.553-0.001 *335.05)0.83*700*8 \\\\P = 1013.032 \ W

(b)the electrical power generated for a breezy winter day

T_s = T_{\infty} = -15 ^oC = 258 \ k

[0.83*700-0.9*5.67*10^{-8}(T_p_2^4-258^4)]-10(T_p_2-258) - (0.553-0.001T_p_2)0.83*700 = 0\\\\8225.81-5.103*10^{-8}T_p_2^4 - 29.419T_p_2 = 0\\\\Apply \  \ iteration \ method \ to \ solve \ for \ T_p_2\\\\T_p_2 = 279.6 \ k

P = \eta \alpha_s G_s A = (0.553-0.001 T_p_2)\alpha_s G_s A \\\\P = (0.553-0.001 *279.6)0.83*700*8 \\\\P = 1270.763 \ W

3 0
3 years ago
Other questions:
  • Uncle Fester's CD's
    12·1 answer
  • If you hold a horizontal metal bar several centimeters above the ground and move it through grass, each leaf of grass bends out
    8·1 answer
  • At an amusement park there is a ride in which cylindrically shaped chambers spin around a central axis. People sit in seats faci
    15·1 answer
  • Simon is riding a bike at 12 km/h away from his friend Keesha. He throws a ball at 5 km/h back to Keesha, who is standing still
    14·1 answer
  • If a stone with an original velocity of zero is falling from a ledge and takes eight seconds that it the ground what is the fina
    8·1 answer
  • How wide is the moon
    5·2 answers
  • Car 1 drives 20 mph to the south, and car 2 drives 30 mph to the north. From the frame of reference of car 1, what is the veloci
    11·2 answers
  • 3. A laser with a wavelength of 650 nm passes through a double slit. A pattern is observed on a wall that is 1.5 meters away fro
    14·1 answer
  • When riding on a bus, you can tell you are moving by
    11·2 answers
  • First answer will be made brainliest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!