Answer:
a. z = 2.00
Step-by-step explanation:
Hello!
The study variable is "Points per game of a high school team"
The hypothesis is that the average score per game is greater than before, so the parameter to test is the population mean (μ)
The hypothesis is:
H₀: μ ≤ 99
H₁: μ > 99
α: 0.01
There is no information about the variable distribution, I'll apply the Central Limit Theorem and approximate the sample mean (X[bar]) to normal since whether you use a Z or t-test, you need your variable to be at least approximately normal. Considering the sample size (n=36) I'd rather use a Z-test than a t-test.
The statistic value under the null hypothesis is:
Z= X[bar] - μ = 101 - 99 = 2
σ/√n 6/√36
I don't have σ, but since this is an approximation I can use the value of S instead.
I hope it helps!
I think that the sum will always be a rational number
let's prove that
<span>any rational number can be represented as a/b where a and b are integers and b≠0
</span>and an integer is the counting numbers plus their negatives and 0
so like -4,-3,-2,-1,0,1,2,3,4....
<span>so, 2 rational numbers can be represented as
</span>a/b and c/d (where a,b,c,d are all integers and b≠0 and d≠0)
their sum is
a/b+c/d=
ad/bd+bc/bd=
(ad+bc)/bd
1. the numerator and denominator will be integers
2. that the denominator does not equal 0
alright
1.
we started with that they are all integers
ab+bc=?
if we multiply any 2 integers, we get an integer
<span>like 3*4=12 or -3*4=-12 or -3*-4=12, etc.
</span>even 0*4=0, that's an integer
the sum of any 2 integers is an integer
like 4+3=7, 3+(-4)=-1, 3+0=3, etc.
so we have established that the numerator is an integer
now the denominator
that is just a product of 2 integers so it is an integer
<span>2. we originally defined that b≠0 and d≠0 so we're good
</span>therefore, the sum of any 2 rational numbers will always be a rational number <span>is the correct answer.</span>
Answer:
39 
Step-by-step explanation:
4
× 8
= 39
You'd use the equation y2-y1/x2-x1
0-(-3)/-7-5 = 3/-12 = -1/4
So -1/4 would be the slope
m= -1/4
The answer is B, f(x)=1/(x-6)