Answer:
Moving the magnet away from the center of the loop with its south pole facing the center of the loop.
Explanation:
Electromagnetic induction is due to a rapidly changing magnetic field, or loop area. The poles of the magnet induce current in the loop but in the opposite direction, depending on the direction of their relative motion. An approaching north pole will induce an anticlockwise current in the loop, while an approaching south pole will do the reverse. To get the galvanometer to flicker in the same direction as of that when the north pole was approaching, we move the magnet away from the center of the loop with its south pole facing the center of the loop.
π=iMRT
Where, π is Osmotic pressure,
i=1 for non-electrolytes,
M is molar concentration of dissolved species (units of mol/L)
R is the ideal gas constant = 0.08206 L atm mol⁻¹K⁻¹,
T is the temperature in Kelvin(K),
Here, to calculate M convert into standard units mg tog, ml to L, c to Kelvin
M= (
*10⁻³ )/ 0.175 =(5.987 *10⁻⁵)mol / 0.175L = 34.21*10⁻⁵ mol/L
π=iMRT=(1)*(34.21*10⁻⁵)*(0.08206)*(298.15)=837×10⁻⁵= 8.37×10⁻³ atm
=6.36 torr
(1 atm=760 torr, 1 Kelvin =273.15 °C, 1L=1000ml, 1g=1000mg)
Answer:
This passage is part of the resolution because it shows what happens after the climax. It wraps up the conflict, and then the story is over.
Explanation: cause I am smart thats why