From context clues, I believe the correct answer is B) Red Dwarf!
Answer:

Explanation:
From the exercise we know the cannonball's <u>initial velocity</u>, the <u>angle</u> which its released with respect to the horizontal and its <u>initial height</u>

If we want to know whats the <u>y-component of velocity</u> we need to use the following formula:

Knowing that 

So, the cannonball's y-component of velocity is 
At a constant speed of 5.00 m/s, the speed at which the poodle completes a full revolution is

so that its period is
(where 1 revolution corresponds exactly to 360 degrees). We use this to determine how much of the circular path the poodle traverses in each given time interval with duration
. Denote by
the angle between the velocity vectors (same as the angle subtended by the arc the poodle traverses), then



We can then compute the magnitude of the velocity vector differences
for each time interval by using the law of cosines:


and in turn we find the magnitude of the average acceleration vectors to be

So that takes care of parts A, C, and E. Unfortunately, without knowing the poodle's starting position, it's impossible to tell precisely in what directions each average acceleration vector points.
Answer:
<em>1988.05 rad/s^2</em>
<em></em>
Explanation:
The angular speed of the optical disk ω = 998.0 rad/s
the time taken to come to rest t = 0.502 s
The magnitude of the average angular acceleration ∝ = ω/t
∝ = 998.0/0.502 = <em>1988.05 rad/s^2</em>