5
if zero falls between two significant numbers it becomes significant.
Solution :
Frequency may be defined as the number of observation or number of waves that is taken in per unit time. The unit of frequency is Hertz or Hz.
It is given that :
Successive harmonic frequencies, f = 52.2 Hz
and f' = 60.9 Hz
Therefore, fundamental frequency, F = f' - f
F = 60.9 - 52.2
F = 8.7 Hz
Therefore the string which is fixed at both the ends forms all the harmonics.
Answer:
The maximum speed at which the car can safety travel around the track is 18.6m/s.
Explanation:
Since the car is in circular motion, there has to be a centripetal force
. In this case, the only force that applies for that is the static frictional force
between the tires and the track. Then, we can write that:

And since
and
, we have:

Now, if we write the vertical equation of motion of the car (in which there are only the weight and the normal force), we obtain:

Substituting this expression for
and solving for
, we get:

Finally, plugging in the given values for the coefficient of friction and the radius of the track, we have:

It means that in its maximum value, the speed of the car is equal to 18.6m/s.
Answer:
3.185×10^-29 kgm/s
Explanation:
Momentum(p)=mass×velocity
=9.1×10^-31×3.5×10
=3.185×10^-29 kgm/s
The gravitational potential energy of the system will decreases from 1,250 J to 625 J. Option A is corect.
<h3>What is the law of conservation of energy?</h3>
According to the Law of Conservation of Energy, energy can neither be created nor destroyed, but it can be transferred from one form to another.
The total energy is the sum of all the energies present in the system. The potential energy in a system is due to its position in the system.
TE=KE+GPE
Case 1;
1450 = 200 J+GPE
GPE=1450 -200
GPE=1250 J
Case 2;
1450 = 825 J+GPE
GPE=1450 -825
GPE=625 J
The gravitational potential energy of the system will decreases from 1,250 J to 625 J.
Hence, option A is corect.
To learn more about the law of conservation of energy, refer to brainly.com/question/2137260.
#SPJ1