<u>Answer-</u>
<em>The correct answer is</em>
<em>∠BDC and ∠AED are right angles</em>
<u>Solution-</u>
In the ΔCEA and ΔCDB,

As this common to both of the triangle.
If ∠BDC and ∠AED are right angles, then 
Now as
∠BCD = ∠ACE and ∠BDC = ∠AED,
∠DBC and ∠EAC will be same. (as sum of 3 angles in a triangle is 180°)
Then, ΔCEA ≈ ΔCDB
Therefore, additional information can be used to prove ΔCEA ≈ ΔCDB is ∠BDC and ∠AED are right angles.
Answer:
A
A
Step-by-step explanation:
A. I don't know hope I helped you out if not sorry for the wrong answer.
Well...just look at ur graph...it appears that the more fliers u send out, the more customers there are....therefore,when the fliers are increased, the number of new customers will increase because the graph shows a positive association
Answer:
3
Step-by-step explanation:
there you go pal :)))))
Notice that
(1 + <em>x</em>)(1 + <em>y</em>) = 1 + <em>x</em> + <em>y</em> + <em>x y</em>
So we can add 1 to both sides of both equations, and we use the property above to get
<em>a</em> + <em>b</em> + <em>a b</em> = 76 ==> (1 + <em>a</em>)(1 + <em>b</em>) = 77
and
<em>c</em> + <em>d</em> + <em>c d</em> = 54 ==> (1 + <em>c</em>)(1 + <em>d</em>) = 55
Now, 77 = 7*11 and 55 = 5*11, so we get
<em>a</em> + 1 = 7 ==> <em>a</em> = 6
<em>b</em> + 1 = 11 ==> <em>b</em> = 10
(or the other way around, since the given relations are symmetric)
and
<em>c</em> + 1 = 5 ==> <em>c</em> = 4
<em>d</em> + 1 = 11 ==> <em>d</em> = 10
Now substitute these values into the desired quantity:
(<em>a</em> + <em>b</em> + <em>c</em> + <em>d</em>) <em>a</em> <em>b</em> <em>c</em> <em>d</em> = 72,000