The question is very poor.
The answer it's fishing for is choice (b), but the only way to know that is
to observe that the others are even worse, and totally from outer space.
This is a Physics question, for heaven's sake. Real science is built on
measurements, and nothing gets done by operating with quantities like
a "small" change in mass, or a "great deal" of energy. This question
causes me to shiver with indignation.
(9.39 x 10⁹ sec) x (1 day / 8.64 x 10⁴ sec)
= (9.39 / 8.64) x 10⁵ days
= 108,680.56 days
Answer:
The answer is B. red, orange, yellow, green, blue, indigo, violet
Explanation:
Most textbooks have the acronym ROYGBV to express the order in which colors appear on the spectrum of light, indigo is included in your list, and that's not a problem, although it's not typical. This spectrum of light is the same order in which colors appear in rainbows.
Answer:
Explanation:
To find the angular velocity of the tank at which the bottom of the tank is exposed
From the information given:
At rest, the initial volume of the tank is:

where;
height h which is the height for the free surface in a rotating tank is expressed as:

at the bottom surface of the tank;
r = 0, h = 0
∴
0 = 0 + C
C = 0
Thus; the free surface height in a rotating tank is:

Now; the volume of the water when the tank is rotating is:
dV = 2π × r × h × dr
Taking the integral on both sides;

replacing the value of h in equation (2); we have:


![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{r^4}{4} \Big]^R_0](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7Br%5E4%7D%7B4%7D%20%5CBig%5D%5ER_0)
![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{R^4}{4} \Big] --- (3)](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7BR%5E4%7D%7B4%7D%20%5CBig%5D%20---%20%283%29)
Since the volume of the water when it is at rest and when the angular speed rotates at an angular speed is equal.
Then 
Replacing equation (1) and (3)






Finally, the angular velocity of the tank at which the bottom of the tank is exposed = 10.48 rad/s