The answer is B tell me if I am wrong.
Answer:
770.1 m
Explanation:
From the question given above, the following data were obtained:
Velocity (v) = 45.3 m/s
Time (t) = 17 s
Displacement (d) =?
Velocity is defined according to the following formula:
Velocity = Displacement /Time
With the above formula, we can obtain the displacement of the ball as follow:
Velocity = Displacement /Time
45.3 = Displacement / 17
Cross multiply
Displacement = 45.3 × 17
Displacement = 770.1 m
Therefore the displacement of the ball is 770.1 m
The length to which the pendulum will be adjusted to keep perfect time is 29.59 inches. See the explanation below.
<h3>What is the justification for the above answer?</h3>
T1 = 2πR√(L1/GM)
and
T2 = 2πR√(L1/GM)
T1/T2 = √(L1/L2).
If the pendulum has an efficient period, that means it executes with perfect frequency.
Thus,
T2 = (24 * 60)/x
= 1440/x
This means that in one day, there are perfect cycles of represented by "x". Note that there are 1440 minutes in one day.
If the other Pendulum is slower by 10 minutes, that means
T1 = 1450/x
Hence
(1450/x)/(1440/x) = √(L1/L2).
⇒ 1450/1440 = √(L1/L2).
Thus,
(1450/1440)² = 30/L
L = 30/(1450/1440)²
L = 30/(1.00694444444)²
L = 30/1.01393711419
L = 29.5876337695
L
29.59 inches.
Hence, the pendulum will need to be adjusted by 29.59 inches to ensure that the clock keeps perfect time.
Learn more about pendulum problems:
brainly.com/question/16617199
#SPJ4
Answer:
The correct option is;
Technician A only
Explanation:
Leaks in the cooling system parts such as the radiator cap can be tested with a pressure operated hand pump by attaching the pump cap to the pump with an adaptor and apply pressure enough for there to be a release of pressure at the cap.
The pressure added to the system should be maintained for up to two minutes. If the pressure drops quicker, then there is likely to be leaks in the system
The freezing and boiling point of the coolant is measured with an antifreeze tester which carries the appropriate apparatus to measure the coolants freezing and boiling points.
Answer: 4m
Explanation:
Since the angle of incidence of a plane mirror can be anything from 0 to 90°
Assuming that the place is a perfectly square 4×4m room
The incident ray would be 45° for the choir(object) at a 4m distance, this is still within the range of values.
We do not forget also, that the focal length of a plane mirror is infinity, the organist would in fact see farther than 4m if need be. And wider