Answer:
A) 100°C
B) 211 g
Explanation:
Heat released by red hot iron to cool to 100°C = 130 x .45 x 645 [ specific heat of iron is .45 J /g/K]
= 37732.5 J
heat required by water to heat up to 100 °C = 85 x 4.2 x 80 = 28560 J
As this heat is less than the heat supplied by iron so equilibrium temperature will be 100 ° C. Let m g of water is vaporized in the process . Heat required for vaporization = m x 540x4.2 = 2268m J
Heat required to warm the water of 85 g to 100 °C = 85X4.2 X 80 = 28560 J
heat lost = heat gained
37732.5 = 28560 + 2268m
m = 4 g.
So 4 g of water will be vaporized and remaining 81 g of water and 130 g of iron that is total of 211 g will be in the cup . final temp of water will be 100 °C.
Answer:
T = 2490 newton
Explanation:
Given that,
Mass of a person, m = 50 Kg
Speed of the swing at the lowest point, v = 10 m/s
Length of the rope, r = 2.5 m
Tension formula is given by
T = mg + ma N
where, T - Tension in the string
m - mass of the body
g - acceleration due to gravity
a - acceleration of the body
Since the person is swinging, the acceleration of the body is given by
a = v²/r m/s²
= 10/2.5 m/s²
a = 40 m/s²
Substituting in T
T = 50 Kg x 9.8 m/s² + 50 Kg X 40 m/s²
= 490 + 2000 Kg m/s²
T = 2490 newton
Therefore the tension in the rope is 2490 newton
Answer:
A. Calculate vector
B. Update vector of each object
C. Update position of each object
Explanation:
Taking assumption of a system in which the forces are a function of the previous step's final position:
Firstly, we calculate the (vector) forces acting on the objects.
Secondly, Update the (vector) momentum of each object
(note: also update the velocity).
Thirdly, Update the (vector) position of each object.
The other operations are as follows;
i. select (dt),
ii. define mass,
iii. Put down constants,
iv. initialize variables, this would occur before the time-step loop is entered.