Answer:fan blades, rotating , abrasive wheel machinery
Explanation:
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
a) 0.01 μF
b) 0.58 μF
c) 0.060 μF
d) 0.8 μF
Answer:
The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
Please refer to the attached Figure 12-1 where three capacitors are connected in series.
We are asked to find out the equivalent capacitance of this circuit.
Recall that the equivalent capacitance in series is given by

Where C₁, C₂, and C₃ are the individual capacitance connected in series.
C₁ = 0.1 μF
C₂ = 0.22 μF
C₃ = 0.47 μF
So the equivalent capacitance is




Rounding off yields

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
thermal expansion ∝L = (δL/δT)÷L ----(1)
δL = L∝L + δT ----(2)
we have δL = 12.5x10⁻⁶
length l = 200mm
δT = 115°c - 15°c = 100°c
putting these values into equation 1, we have
δL = 200*12.5X10⁻⁶x100
= 0.25 MM
L₂ = L + δ L
= 200 + 0.25
L₂ = 200.25mm
12.5X10⁻⁶ *115-15 * 20
= 0.025
20 +0.025
D₂ = 20.025
as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0
Answer:
The minimum volume requirement for the granite stones is 1543.64 cm³
Explanation:
1 granite stone weighs 10 denarium
100 granted stones will weigh 1000 denarium
1 denarium = 3.396g
1000 denarium = 3396g.
But we're told that 20% of material is lost during the making of these stones.
This means the mass calculated represents 80% of the original mass requirement, m.
80% of m = 3396
m = 3396/0.8 = 4425 g
This mass represents the minimum mass requirement for making the stones.
To now obtain the corresponding minimum volume requirement
Density = mass/volume
Volume = mass/density = 4425/2.75 = 1543.64 cm³
Hope this helps!!!
Answer:
(b) 56%
Explanation:
the maximum thermal efficiency is possible only when power cycle is reversible in nature and when power cycle is reversible in nature the thermal efficiency depends on the temperature
here we have given T₁ (Higher temperature)= 600+273=873
lower temperature T₂=110+273=383
Efficiency of power cycle is given by =1-
=1-
=1-0.43871
=.56
=56%