1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksju [112]
3 years ago
14

Consider two electrochemical reaqctions. Reaction A results in the transfer of 2 mol of electrons per mole of reactant and gener

ates a current of 5 A on an electrode 2 cm2 in area. Reaction B results in the transfer of 3 mol of electrons per mole of reactant and generates a current of 15 A on an electrode 5 cm2 in area. What are the net reaction rates for reactions A and B (in moles of reactant per square centimeter per second)? Which reaction has the higher net reaction rate?
Engineering
2 answers:
poizon [28]3 years ago
8 0

Answer:

Reaction A has a higher net reaction rate

Explanation:

Rate of electrochemical reaction rate per unit area = \frac{i}{nFA}

F = 96500 Cmol^{-1} ( Faraday constant)

n = number of moles of electrons per mole of reactant

A = Area of electrode

i = current generated

convert the current from Amperes to Cs^{1}

To calculate net reaction of reaction A

i = 5 cs^{1}

n = 2

A = 2

back to the equation

=  5 / (2 * 96500 * 2) = (1.3 * 10 ^ -5)  mols^-1 cm^-2

To calculate net reaction of reaction B

i = 15 cs^{1}

n = 3

A = 5

back to the equation

= 15 / ( 3 * 96500 * 5) =  (1.036 * 10 ^ -5)  mols^-1 cm^-2

Delvig [45]3 years ago
3 0

Answer:

Reaction A has higher net reaction rate

Explanation:

Data:

The reaction rates:

Reaction A:

Number of electrons per area = 2 mol/ 2 cm²

                                                  = 1 mol/ cm²

Reaction B:

Number of electrons per area = 3 mol/ 5 cm²

                                                  = 0.6 mol/cm²

Based on the calculations above, the reaction B has a higher reaction rate.

You might be interested in
How can the use of local materials improve the standard of living of Filipinos?
Rudiy27
Choose a quality one, and don't use it as necessary
7 0
2 years ago
At the instant shown, slider block B is moving with a constant acceleration, and its speed is 150 mm/s. Knowing that after slide
Xelga [282]

Answer:

a) aA = - 13.33 mm/s²

aB = - 20 mm/s²

b) aD = - 13.33 mm/s²

c) vB = 70 mm/s

d) xB = 440 mm

Explanation:

Given

The initial speed of B is: v₀B = 150 mm/s

Distance moved by A is: xA = 240 mm

Velocity of A is: vA = 60 mm/s

Assuming:

Displacement of blocks are denoted by:

A = xA

B = xB

C = xC

D = xD

From the pic shown, the total length of the cable is:

xB + (xB - xA) + 2*(d - xA) = L

⇒ 2*xB - 3*xA = L - 2*d

where L - 2*d is constant. Differentiating the above equation with respect to time:

d(2*xB)/dt - d(3*xA)/dt = 0

⇒ 2*vB - 3*vA = 0    (i)

Substituting in equation (i)

2*(150 mm/s) - 3*vA = 0

⇒ v₀A = 100 mm/s  (initial speed of A)

Then, we use the equation

vA² = v₀A² + 2*aA*xA

Substituting the values in above equation:

(60 mm/s)² = (100 mm/s)² + 2*aA*(240 mm)

⇒ aA = - 13.33 mm/s²

If  2*vB - 3*vA = 0

Differentiating the above equation with respect to time:

d(2*vB)/dt - d(3*vA)/dt = 0

⇒ 2*aB - 3*aA = 0    (ii)

Substituting in equation (ii)

2*aB - 3*(- 13.33 mm/s²) = 0

⇒ aB = - 20 mm/s²

b) From the pic shown,

xD - xA = constant

If we apply

d(xD)/dt - d(xA)/dt = 0

⇒ vD - vA = 0

then

d(vD)/dt - d(vA)/dt = 0

⇒ aD - aA = 0

⇒ aD = aA = - 13.33 mm/s²

c) We use the formula

vB = v₀B + aB*t

Substituting the values in above equation:

vB = 150 mm/s + (- 20 mm/s²)*(4 s)

⇒ vB = 70 mm/s

d) We apply the equation

xB = v₀B*t + 0.5*aB*t²

Substituting the values in above equation:

xB = (150 mm/s)*(4 s) + 0.5*(- 20 mm/s²)*(4 s)²

⇒ xB = 440 mm

4 0
3 years ago
A TV USE 75 WATTS WHILE IN USED ASSMING THAT ITIS USED 4 HOURS EVERY DAY HOW MUCH ENERGY IN 4 IN KWH WOULD THE TV CONSUME ANNUAL
prohojiy [21]

Answer:

i don't think i understand the question

Explanation:

7 0
2 years ago
Read 2 more answers
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
iris [78.8K]

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

4 0
3 years ago
What is electrical energy used for?
FromTheMoon [43]

Answer:

to power devices  appliances and  some methods of transportation

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • After a capacitor is fully chargerd, a small amount of current will flow though it. what is this current called?
    14·1 answer
  • A horse on the merry-go-round moves according to the equations r = 8 ft, u = (0.6t) rad, and z = (1.5 sin u) ft, where t is in s
    5·1 answer
  • I study to get good grades because my parents want to send me to the college of my choice.” This is an a. Intrinsic motivational
    6·2 answers
  • A mass of air occupying a volume of 0.15m^3 at 3.5 bar and 150 °C is allowed [13] to expand isentropically to 1.05 bar. Its enth
    11·1 answer
  • A 40 mph wind is blowing past your house and speeds up as it flows up and over the roof. If the elevation effects are negligible
    14·1 answer
  • Water enters an ice machine at 55°F and leaves as ice at 25°F. If the COP of the ice machine is 2.45 during this operation, dete
    7·1 answer
  • A 300-ft long section of a steam pipe with an outside diameter of 4 in passes through an open space at 50oF. The average tempera
    12·1 answer
  • What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
    15·1 answer
  • 'Energy' has the potential to:
    6·1 answer
  • Is a diesel truck less expensive to drive than a gas truck?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!