1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
2 years ago
7

A moving-coil instrument, which gives full-scale deflection with 0.015 A has a copper coil having resistance of 1.5 Ohm at 15°C

and a temperature coefficient of 1/234.5 at 0 degree C in series with a swamp resistance 3.5 Ohm having a negligible temperature coefficient. Determine the resistance of shunt required for a full-scale deflection of 20 A and the resistant required for a full-scale deflection of 250 V. If the instrument reads correctly at 15°C, determine the percentage error in each case when the temperature is 25°C.
Engineering
1 answer:
natulia [17]2 years ago
5 0

Answer: check answers in pictures (2 p)

You might be interested in
A 500-km, 500-kV, 60-Hz, uncompensated three-phase line has a positivesequence series impedance. z = 5 0.03 1 + j 0.35 V/km and
Anni [7]

Answer:

A) 282.34 - j 12.08 Ω

B) 0.0266 + j 0.621 / unit

C)

A = 0.812 < 1.09° per unit

B =  164.6 < 85.42°Ω  

C =  2.061 * 10^-3 < 90.32° s

D =  0.812 < 1.09° per unit

Explanation:

Given data :

Z ( impedance ) = 0.03 i  + j 0.35 Ω/km

positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km

A) calculate Zc

Zc = \sqrt{\frac{z}{y} }  =  \sqrt{\frac{0.03 i  + j 0.35}{j4.4*10^-6 } }    

    = \sqrt{79837.128< 4.899^o}   =  282.6 < -2.45°

hence Zc = 282.34 - j 12.08 Ω

B) Calculate  gl

gl = \sqrt{zy} * d  

 d = 500

 z = 0.03 i  + j 0.35

 y = j4.4*10^-6 S/km

gl =  \sqrt{0.03 i  + j 0.35*  j4.4*10^-6}  * 500

   = \sqrt{1.5456*10^{-6} < 175.1^0} * 500

   = 0.622 < 87.55 °

gl = 0.0266 + j 0.621 / unit

C) exact ABCD parameters for this line

A = cos h (gl) . per unit  =  0.812 < 1.09° per unit ( as calculated )

B = Zc sin h (gl) Ω  = 164.6 < 85.42°Ω  ( as calculated )

C = 1/Zc  sin h (gl) s  =  2.061 * 10^-3 < 90.32° s ( as calculated )

D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )

where :  cos h (gl)  = \frac{e^{gl} + e^{-gl}  }{2}

             sin h (gl) = \frac{e^{gl}-e^{-gl}  }{2}

     

7 0
2 years ago
Can a 1½ " conduit, with a total area of 2.04 square inches, be filled with wires that total 0.93 square inches if the maximum f
Papessa [141]

Answer:

it is not possible to place the wires in the condui

Explanation:

given data

total area = 2.04 square inches

wires total area = 0.93 square inches

maximum fill conduit =  40%

to find out

Can it is possible place wire in conduit conduit

solution

we know maximum fill is 40%

so here first we get total area of conduit that will be

total area of conduit = 40% × 2.04

total area of conduit = 0.816 square inches

but this area is less than required area of wire that is 0.93 square inches

so we can say it is not possible to place the wires in the conduit

4 0
3 years ago
What is one of the most common ways workers get hurt around machines
-BARSIC- [3]

Answer:

if their body parts stuck in a machine,if machine expl

Explanation:

ode.

4 0
2 years ago
Today I meant to look for my missing watch, but I could never find the time.
xxMikexx [17]

Answer:

haha i get it

Explanation:

5 0
2 years ago
Read 2 more answers
A concentrated load P is applied to the upper end of a 1.47-m-long pipe. The outside diameter of the pipe is D = 112 mm and the
myrzilka [38]

Answer:

Pmax = 38251.73 N

Explanation:

Given info

L = 1.47 m

D = 112 mm ⇒ R = D/2 = 112/2 mm = 56 mm

d = 101 mm  ⇒ r = D/2 = 101/2 mm = 50.5 mm

a) We can apply the following equation in order to get Q (First Moment of Area):

Q = 2*(A₁*y₁-A₂*y₂)

where

A₁ = π*R² = π*(56 mm)² = 3136 π mm²  

y₁ = 4*R/(3*π) = 4*56/(3*π) mm = 224/(3*π) mm

A₂ = π*r² = π*(50.5 mm)² = 2550.25 π mm²

y₂ = 4*r/(3*π) = 4*50.5/(3*π) mm = 202/(3*π) mm

then

Q = 2*(3136 π mm²*224/(3*π) mm-2550.25 π mm²*202/(3*π) mm)

⇒ Q = 62437.833 mm³

b) If  τallow = 83 MPa = 83 N/mm²

P = ?

We can use the equation

τ = V*Q / (t*I)   ⇒  V = τ*t*I / Q

where

t = D - d = 112 mm - 101 mm = 11 mm

I = (π/64)*(D⁴-d⁴) = (π/64)*((112 mm)⁴-(101 mm)⁴) = 2615942.11 mm⁴

Q = 62437.833 mm³

we could also use this equation in order to get Q:

Q = (4/3)*(R³-r³)

⇒  Q = (4/3)*((56 mm)³-(50.5 mm)³) = 62437.833 mm³

then we have

V = (83 N/mm²)*(11 mm)*(2615942.11 mm⁴) / (62437.833 mm³)

⇒ V = 2942.255 N

Finally Pmax = V = 38251.73 N

6 0
3 years ago
Other questions:
  • Which statement is true for the relay logic diagram shown below?
    9·1 answer
  • In Visual Basic/Visual Studio, characteristics of controls, such as the Name of the control, or the Text displayed on the contro
    10·1 answer
  • If a ball is dropped from a height its velocity will increase until it hits the ground, assuming that aerodynamic drag due to th
    6·1 answer
  • Plateau Creek carries 5.0 m^3 /s of water with a selenium (Se) concentration of 0.0015 mg/L. A farmer withdraws water at a certa
    12·1 answer
  • How do i play Fortnite on controller?
    6·2 answers
  • You are a planning aide on a team and are given the assignment of researching the historical significance and original blueprint
    5·1 answer
  • What are the main causes of injuries when using forklifts?
    5·1 answer
  • 8. Find the volume of the figure shown below: * V=L x W x H 7 cm 2 cm 2 cm​
    9·1 answer
  • The figure below appeared three heat treatments processes of steel (A, B and C),
    14·1 answer
  • The project's criteria.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!