1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
7

A moving-coil instrument, which gives full-scale deflection with 0.015 A has a copper coil having resistance of 1.5 Ohm at 15°C

and a temperature coefficient of 1/234.5 at 0 degree C in series with a swamp resistance 3.5 Ohm having a negligible temperature coefficient. Determine the resistance of shunt required for a full-scale deflection of 20 A and the resistant required for a full-scale deflection of 250 V. If the instrument reads correctly at 15°C, determine the percentage error in each case when the temperature is 25°C.
Engineering
1 answer:
natulia [17]3 years ago
5 0

Answer: check answers in pictures (2 p)

You might be interested in
True/False
sweet [91]

Answer:

false jdbebheuwowjwjsisidhhdd

7 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Assoli18 [71]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}  

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

8 0
4 years ago
Can you solve this question​
Alecsey [184]

Answer:

eojcjksjsososisjsiisisiiaodbjspbcpjsphcpjajosjjs ahahhahahahahahahahahahahahahhhahahahaahahhahahahahaahahahahaha

6 0
3 years ago
Read 2 more answers
There are two identical oil tanks. The level of oil in Tank A is 12 ft and is drained at the rate of 0.5 ft/min. Tank B contains
Luba_88 [7]

Answer:

  16 minutes

Explanation:

This is an example of a class of problems in which two quantities start with different initial values and change at different rates. In such problems, the rates of change are generally ones that cause the values to converge.

The question usually asks when the values will be the same. The generic answer is, "when the difference in rates makes up the difference in initial values."

Here the tanks differ in initial fill height by 12 -8 = 4 ft. The rates of change differ by 0.5 -0.25 = 0.25 ft/min. The more filled tank is draining faster (important), so the fill heights will converge after ...

  (4 ft)/(0.25 ft/min) = 16 min

The level in the two tanks will be the same after 16 minutes.

__

<em>Additional comment</em>

The oil levels at that time will be 4 ft.

You can write two equations for height:

  y = 12 -0.5x . . . . . . . height in feet after x minutes (tank A)

  y = 8 -0.25x . . . . . .  height in feet after x minutes (tank B)

These will be equal when ...

  y = y

  12 -0.5x = 8 -0.25x

  4 = 0.25x . . . . . . . . . . add 0.5x -8

  16 = x . . . . . . . . . . . . multiply by 4 . . . . time to equal height

The graph shows when the tanks will have equal heights and when they will be drained.

4 0
2 years ago
The high electrical conductivity of copper is an important design factor that helps improve the energy efficiency of electric mo
ludmilkaskok [199]

Answer:

B

Explanation:

This is a two sample t-test and not a matched pair t-test

null hypothesis(H0) will be that mean energy consumed by copper rotor motors is greater than or equal to mean energy consumed by aluminium rotor motors

alternate hypothesis(H1) will be that mean energy consumed by copper rotor motors is less than or equal to mean energy consumed by aluminium rotor motors.

So, option D is rejected

The hypothesis will not compare mean of differences of values of energy consumed by copper rotor motor and aluminium rotor motor.

Option A and C are also rejected

5 0
3 years ago
Other questions:
  • Define a public static method named s2f that takes two String arguments, the name of a file and some text. The method creates th
    5·1 answer
  • You find a publication from a research laboratory that identifies a new catalyst for ammonia synthesis. The article contains the
    6·1 answer
  • A 15 cm × 15 cm circuit board dissipating 20 W of power uniformly is cooled by air, which approached the circuit board at 20C w
    11·1 answer
  • Consider a 1000-W iron whose base plate is made of 0.5-cm-thick aluminum alloy 2024-T6 (rho = 2770 kg/m3 and cp = 875 J/kg·°C).
    12·1 answer
  • Write a statement that increases numPeople by 5. Ex: If numPeople is initially 10, the output is: There are 15 people.
    11·1 answer
  • A 13.7g sample of a compound exerts a pressure of 2.01atm in a 0.750L flask at 399K. What is the molar mass of the compound?a. 3
    15·1 answer
  • What is the difference between digital instruments and decimal scaled instruments to measure
    6·1 answer
  • Consider the equation y = 10^(4x). Which of the following statements is true?
    9·1 answer
  • Identify three questions a patient might ask of the nuclear medicine technologist performing a nuclear medicine exam.
    11·1 answer
  • 4.6. What is the maximum peak output voltage and current if the supply voltages are changed to +15 V and -15 V.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!