1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bagirrra123 [75]
3 years ago
8

A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125

lbm/s at 14.7 psia. Make-up water to replenish steam losses from the plant enters at inlet 2 at a rate of 10 lbm/s at 14.7 psia and 60o F. Water exits the tank at 14.7 psia. Neglect kinetic and potential energy effects, determine for the water exiting the tank (a) The mass flow rate (in lbm/s) (b) The temperature (in o F)
Engineering
1 answer:
kompoz [17]3 years ago
6 0

Answer:

a. The mass flow rate (in lbm/s) is 135lbm/s

b. The temperature (in o F) is 200.8°F

Explanation:

We assume that potential energy and kinetic energy are negligible and the control volume operates at a steady state.

Given

a. The mass flow rate (in lbm/s) is 135lbm/s

b.

m1 = Rate at inlet 1 = 125lbm/s

m2 = Rate at inlet 2 = 10lbm/s

The mass flow rate (in lbm/s) is calculated as m1 + m2

Mass flow rate = 125lbm/s + 10lbm/s

Mass flow rate = 135lbm/s

Hence, the mass flow rate (in lbm/s) is 135lbm/s

b. To calculate the temperature.

First we need to determine the enthalpy h1 at 14.7psia

Using table A-3E (thermodynamics)

h1 = 180.15 Btu/Ibm

h2 at 14.7psia and 60°F = 28.08 Btu/Ibm

Calculating h3 using the following formula

h3 = (h1m1 + h2m2) / M3

h3 = (180.15 * 125 + 28.08 * 10)/135

h3 = 168.8855555555555

h3 = 168.89 Btu/Ibm

To get the final temperature; we make use of table A-2E of thermodynamics.

Because h3 < h1, it means the liquid is at a compressed state.

The corresponding temperature at h3 = 168.89 is 200.8°F

The temperature (in o F) is 200.8°F

You might be interested in
A wastewater treatment plant has two primary clarifiers, each 20m in diameter with a 2-m side-water depth. the effluent weirs ar
jasenka [17]

Answer:

overflow rate 20.53 m^3/d/m^2

Detention time 2.34 hr

weir loading  114.06 m^3/d/m

Explanation:

calculation for single clarifier

sewag\  flow Q = \frac{12900}{2} = 6450 m^2/d

surface\  area =\frac{pi}{4}\times diameter ^2 = \frac{pi}{4}\times 20^2

surface area = 314.16 m^2

volume of tankV  = A\times side\ water\ depth

                             =314.16\times 2 = 628.32m^3

Length\ of\  weir = \pi \times diameter of weir

                       = \pi \times 18 = 56.549 m

overflow rate =v_o = \frac{flow}{surface\ area} = \frac{6450}{314.16} = 20.53 m^3/d/m^2

Detention timet_d = \frac{volume}{flow} = \frac{628.32}{6450} \times 24 = 2.34 hr

weir loading= \frac{flow}{weir\ length} = \frac{6450}{56.549} = 114.06 m^3/d/m

6 0
3 years ago
What must engineers keep in mind so that their solutions will be appropriate?
vekshin1

Answer:

Context

Explanation:

It is of great value for an engineer to keep the context of his/her experiment in mind.

7 0
3 years ago
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
Two substances, A and B, initially at different temperatures, come into contact and reach thermal equilibrium. The mass of subst
Kaylis [27]

Answer:

The specific heat capacity of substance A is 1.16 J/g

Explanation:

The substances A and B come to a thermal equilibrium, therefore, the heat given by the hotter substance B is absorbed by the colder substance A.

The equation becomes:

Heat release by Substance B = Heat Gained by Substance A

The heat can be calculated by the formula:

Heat = mCΔT

where,

m = mass of substance

C = specific heat capacity of substance

ΔT = difference in temperature of substance

Therefore, the equation becomes:

(mCΔT) of A = (mCΔT) of B

<u>FOR SUBSTANCE A:</u>

m = 6.01 g

ΔT = Final Temperature - Initial Temperature

ΔT = 46.1°C - 20°C = 26.1°C

C = ?

<u>FOR SUBSTANCE B:</u>

m = 25.6 g

ΔT = Initial Temperature - Final Temperature

ΔT = 52.2°C - 46.1°C = 6.1°C

C = 1.17 J/g

Therefore, eqn becomes:

(6.01 g)(C)(26.1°C) = (25.6 g)(1.17 J/g)(6.1°C)

C = (182.7072 J °C)/(156.861 g °C)

<u>C = 1.16 J/g</u>

5 0
3 years ago
A ductile hot-rolled steel bar has a minimum yield strength in tension and compression of Syt = 60 kpsi and Syc = 75 kpsi. Using
kow [346]

Answer:

2.135

Explanation:

Lets make use of these variables

Ox 16.5 kpsi, and Oy --14,5 kpsi

To determine the factor of safety for the states of plane stress. We have to first understand the concept of Coulomb-Mohr theory.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress.

Please refer to attachment for the step by step solution.

4 0
4 years ago
Other questions:
  • Name two types of Transformers.
    6·1 answer
  • Find the mass if the force is 18 N and the acceleration is 2 m/s2
    8·2 answers
  • What is the difference between the pressure head at the end of a 150m long pipe of diameter 1m coming from the bottom of a reser
    7·1 answer
  • A hollow, spherical shell with mass 2.00kg rolls without slipping down a slope angled at 38.0?.
    15·1 answer
  • When an emergency vehicle approaches you from in front or behind you, what should you do?
    14·1 answer
  • Sam, a carpenter, is asked to identify the abilities he has that are important to his work. What are the top abilities he might
    9·2 answers
  • I want to solve the question
    11·1 answer
  • Two children are playing on a seesaw. The child on the left weighs 50 lbs. And the child on the right weighs 100 lbs. If the chi
    5·1 answer
  • It is illegal to improperly dispose of antifreeze.<br> True<br> False
    8·2 answers
  • If an internally piloted DCV does not shift, you should use a gauge to _____. A.check the pilot line pressure b. check the inlet
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!