Answer:
19.6 N of torque. The 2kg load is being affected by acceleration due to gravity which is 9.8 m/s^s
Explanation:
2×9.8=19.6
Answer:
Stretch in the spring = 0.1643 (Approx)
Explanation:
Given:
Mass of the sled (m) = 9 kg
Acceleration of the sled (a) = 2.10 m/s
²
Spring constant (k) = 115 N/m
Computation:
Tension force in the spring (T) = ma
Tension force in the spring (T) = 9 × 2.10
Tension force in the spring (T) = 18.9 N
Tension force in the spring = Spring constant (k) × Stretch in the spring
18.9 N = 115 N × Stretch in the spring
Stretch in the spring = 18.9 / 115
Stretch in the spring = 0.1643 (Approx)
From among the choices provided, the better choice is the upper-case letter '<em>T </em>'. That symbol can conveniently be used to represent the words "true" or "truth", which is exactly the reason that it is the better choice for a response, since the complicated statement at the beginning of the question is completely true in its every detail, nuance, jot and tittle.

The best method to use in prevention of self-demagnetization of a permanent magnet is by use of a keeper. Keepers were also commonly known as amateurs. They help in storing magnets safely, especially those that have low coercivity ( magnets that are extremely susceptible to stray fields).

Hope It Helps!
Answer:
6.77 minutes
Explanation:
172 degree - 78 degree = (185 degree - 78 degree)e−2 k
=> 94 = 107
e−2 k => 94 ÷ 107
k => ln (94÷107) / 2
147 - 78 = (185 - 78)e ^[ln (94÷107) / 2]
=> 69 = 107 e^ [ln (94÷107) / 2]
e^[ln (94÷107) / 2] =69 ÷ 107
=> t = [ln (69 ÷ 107)] ÷ [ln (94÷107) / 2]
t=> -0.4387 ÷ -0.0648
t => 6.77 minutes.
Therefore, the final answer to the question is 6.77 minutes.