In a perfectly ELASTIC collision between two perfectly rigid objects <span>both the momentum and the kinetic energy of the system are conserved.hope it helps</span>
Answer:
Travelled 18 km, they are 6 km from home.
Explanation:
12/2 (halfway) is 6km. So, 6 + 12 would be 18 km, total amount travelled. The total distance of the trip would be 24 km (12 km out, 12km back) if they travelled 12+6 (18km) then they only have 6 km more to go.
Complete and Clear Question:
A person puts a few apples into the freezer at -15°C to cool them quickly for guests who are about to arrive. Initially, the apples are at a uniform temperature of 20°C, and the heat transfer coefficient on the surfaces is 8 W/m2·K. Treating the apples as 9-cm-diameter spheres and taking their properties to be
840 kg/m3,
3.81 kJ/kg·K, k = 0.418 W/m·K, and
, determine the center and surface temperatures of the apples in 1 h. Also, determine the amount of heat transfer from each apple. Solve this problem using analytical one-term approximation method (not the Heisler charts).
Answer:
Temperature at the center of the apple, T(t) = 11.215°C
Temperature at the surface of the apple, T(r,t) = 2.68°C
Amount of heat transfer from each apple, Q = 21.47 kJ
Explanation:
For clarity and easiness of expression, the calculations are handwritten and attached as a file. Check the attached files for the complete calculation.
Answer:
The COP of the system is = 4.6
Explanation:
Given data
Higher pressure = 1.8 M pa
Lower pressure = 0.12 M pa
Now we have to find out high & ow temperatures at these pressure limits.
Higher temperature corresponding to pressure 1.8 M pa
°c = 335.9 K
Lower temperature corresponding to pressure 0.2 M pa
°c = 262.9 K
COP of the system is given by


COP = 4.6
Therefore the COP of the system is = 4.6