1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olganol [36]
3 years ago
5

In a lightning bolt, a large amount of charge flows during a time of 1.2 x 10-3 s. Assume that the bolt can be represented as a

long, straight line of current. At a perpendicular distance of 21 m from the bolt, a magnetic field of 8.4 x 10-5 T is measured. How much charged has flowed during the lightning bolt?
Physics
1 answer:
ohaa [14]3 years ago
6 0

Answer: 10.58 C has flowed during the lightning bolt

Explanation:

Given that;

Time of flow t = 1.2 × 10⁻³

perpendicular distance r = 21 m

Magnetic field B = 8.4 x 10⁻⁵ T

Now lets consider the expression for magnetic field;

B = u₀I / 2πr

the current flow is;

I = ( B × 2πr ) / u₀

so we substitute

I = ( (8.4 x 10⁻⁵) × 2 × 3.14 × 21 ) / 4π ×10⁻⁷

=  0.01107792 / 0.000001256

= 8820 A

Hence the charge flows during lightning bolt  will be;

q = It

so we substitute

q = 8820 × 1.2 × 10⁻³

q = 10.58 C

therefore 10.58 C has flowed during the lightning bolt

You might be interested in
In a local diner, a customer slides an empty coffee cup down the counter for a refill. The cup slides off the counter and strike
zysi [14]

a) t=\sqrt{\frac{2h}{g}}

b) v=\frac{d}{\sqrt{\frac{2h}{g}}}

c) v=\sqrt{d^2(\frac{g}{2h})+(2gh)}

d) \theta=tan^{-1}(\frac{2h}{d}) (radians)

Explanation:

a)

The motion of the cup sliding off the counter is the motion of a projectile, consisting of two independent motions:

- A uniform motion along the horizontal direction

- A uniformly accelerated motion (free fall) along the vertical direction

The time of flight of the cup is entirely determined by the vertical motion, therefore we can use the suvat equation:

s=ut+\frac{1}{2}at^2

where here:

s=h (the vertical displacement is the height of the counter)

u=0 (the initial vertical velocity of the cup is zero)

a=g (the vertical acceleration is the acceleration of gravity)

Solving for t, we find the time of flight of the cup:

h=0+\frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}

b)

To solve this part, we just analyze the horizontal motion of the cup.

Here we know that the horizontal motion of the cup is uniform: this means that is horizontal speed is constant during the whole motion, and it is actually equal to the speed at which the mug leaves the counter.

For a uniform motion, the speed is given by

v=\frac{d}{t}

where

d is the distance covered

t is the time taken

Here, the distance covered is d, the distance from the base of the counter, while the time taken is the time of flight:

t=\sqrt{\frac{2h}{g}}

Substituting into the previous equation, we find the speed of the mug as it leaves the counter:

v=\frac{d}{\sqrt{\frac{2h}{g}}}

c)

Here we want to find the speed of the cup immediately before it hits the floor.

Here we have to consider that while the mug falls, its vertical speed increases, while the horizontal speed remains constant.

Therefore, the horizontal speed of the cup before it hits the ground is:

v_x=\frac{d}{\sqrt{\frac{2h}{g}}}=d\sqrt{\frac{g}{2h}}

The vertical speed instead is given by the suvat equation:

v_y=u_y + at

where:

u_y=0 is the initial vertical velocity

a=g is the acceleration

t=\sqrt{\frac{2h}{g}} is the time of flight

Substituting,

v_y = 0 +g(\sqrt{\frac{2h}{g}})=\sqrt{2gh}

The actual speed of the cup just before it hits the floor is the resultant of the horizontal and vertical speeds, so it is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{d^2(\frac{g}{2h})+(2gh)}

d)

Just before hitting the floor, the velocity of the cup has two components:

v_x=d\sqrt{\frac{g}{2h}} is the horizontal component (in the forward direction)

v_y=\sqrt{2gh} is the vertical component (in the downward direction)

Since the two components are perpendicular to each other, the angle of the direction is given by the equation

tan \theta = \frac{v_y}{v_x}

where here \theta is measured as below the horizontal direction.

Substituting the expressions for v_x,v_y, we find:

tan \theta = \frac{\sqrt{2gh}}{d\sqrt{\frac{g}{2h}}}=\frac{2h}{d}

So

\theta=tan^{-1}(\frac{2h}{d}) (radians)

4 0
3 years ago
Isaac Newton was an English physicist who lived in the mid 1600s to the early 1700s. Newton stated that all objects are attracte
NISA [10]

Answer:

both staments are examples of scientfic laws

Explanation:

idk

6 0
3 years ago
Read 2 more answers
We can expect the force of friction to be greater for an object moving on a surface if the surfaces in contact are
nikitadnepr [17]

Answer:

c

Explanation:

Friction is caused by how rough and object is, and how much the object weighs, as this causes it to drag more.

8 0
2 years ago
Some one help my science homework is due tomorrow and I'm so stuck with question 8-9, and 11-12
yuradex [85]
Off the top of my head, I only know 9 and 11, so I'll answer those two.

9) A heterotroph is an organism that relies on other organisms for food/energy
    An autotroph can produce its own food from inorganic compounds (light)

11) Vascular plants have specialized tubes for transporting nutrients
      Nonvascular plants do not have such tubes and are simpler
5 0
4 years ago
1. Space probes have not landed on Pluto yet. Describe three types of information you would collect if you were designing the pr
konstantin123 [22]

Answer:

Space probes are made to conduct science experiments. They do not have people on them. Space probes have helped scientists get information about our solar system. Most probes are not designed to return to Earth. Some have landed on other planets! Others have flown past the planets and taken pictures of them for scientists to see. There are even some space probes that go into orbit around other planets and study them for a long time. The information they gather is used to help us understand the weather and other changes which happen on planets other than the Earth. This information is important in helping to plan other space missions such as ones to Mars and to Saturn.

Explanation:

7 0
3 years ago
Other questions:
  • In an amusement park rocket ride, cars are suspended from 3.40-m cables attached to rotating arms at a distance of 5.90 m from t
    10·1 answer
  • What is a transverse wave
    8·1 answer
  • A 60.0-kg ball of clay is tossed vertically in the air with an initial speed of 4.60 m/s. Ignoring air resistance, what is the c
    9·1 answer
  • Please help with this problem.
    13·1 answer
  • Gravity is a force between any two objects with mass wht doesn’t a person feel a gravitational force between them herself and an
    5·1 answer
  • Laura is skydiving when at a certain altitude she opens her parachute and
    15·1 answer
  • Is a cookie sheet a conductor or an insulator?
    6·2 answers
  • What does K stand for in Hookes law?
    12·2 answers
  • Carbon Dioxide levels fluctuate in part due to which of the following?
    13·1 answer
  • How can I start studying physics myself? Please be specific, such as recommended series or books. BOUNTIFUL REWARD FOR PROPER AN
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!