Answer:
2 a) it is less dense than the water
2 b) it is more dense than the water
3 a ping pong ball is hollow and less dense than the water so it quickly bounces up to the surface of the water
Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
Answer:
a. Object A
Explanation:
The mass of an object implies the quantity of matter in it, while the weight is the amount of gravitational force applied on an object.
The object A has a mass of 25 lbs, but object B on the earth has a weight, W, of 25 N.
So that,
For object A on the moon, mass = 25 lbs
For object B on the earth, W = 25 N,
W = m x g
25 = m x 10 (g = 10 m/
)
m = 
= 2.5 lbs
Mass of object B is 2.5 lbs.
Therefore, the mass of the object A is more than that of B.
By heat or change in matter,
there can be different reactions that create heat (like exothermic or endothermic reactions)
or movement can give off energy too,
energy is basically just heat
Answer:
n = 1,875
Explanation:
The speed of light in vacuum is constant (c) and in a material medium it is
v = d / t
The refractive index of a material is defined by
n = c / v
Let's look for the speed of light in the material, in general the length that light travels is known, this value is high, x = 1, when we place a block on the road, a small amount is lengthened by the length of the block, which in general is despised
These measurements are made on a digital oscilloscope that allows to stop the signals and measure their differences, that is, the zero is taken when the first ray arrives and the time for the second ray is measured,
v = d / t
v = 1 / 6.25 10⁻⁹
v = 1.6 10⁸ m / s
we calculate the refractive index
n = 3 10⁸ / 1.6 10⁸
n = 1,875