Answer:
Josh is the strongest
The net force is 5N towards right
<h2>
It takes 6.78 seconds to complete 12 dribbles.</h2>
Explanation:
Frequency of dribble = 1.77 Hz
That is
Number of dribbles in 1 second = 1.77

Now we need to find how long does it take for you to complete 12 dribbles.
Time taken for 12 dribbles = 12 x Time taken for 1 dribble
Time taken for 12 dribbles = 12 x 0.565
Time taken for 12 dribbles = 6.78 seconds
It takes 6.78 seconds to complete 12 dribbles.
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
∴ [T]=[WF−1V−1]
Hope this answer is right!!
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.