For this problem, we use Graham's Effusion Law to find out the rate of effusion of chlorine gas. The formula is as follows:
R₁/R₂ = √(M₂/M₁)
Let 1 be N₂ while 2 be Cl₂
255/R₂ = √(28/70.8)
Solving for R₂,
R₂ = 405.5 s
<em>Thus, it would take 405.5 s to effuse chlorine gas.</em>
<u>Answer:</u>
Nitrogen gas be a mineral only, if it is in organic forms.
<u>Explanation:</u>
Most of the forms of organic nitrogen is not be taken by plants, with the exception in the form of small organic molecules. Also plants can promptly take the nitrogen when it is in other forms like ammonia and nitrate.
The microorganisms in the soil converts the organic forms of nitrogen to mineral form when they decompose organic matters and also fresh plant residues. This type of process is called mineralisation.
Answer:
.7689 mol
15.516 g
Explanation:
Use the Ideal Gas Law, PV = nRT.
Make sure to use the correct ideal gas constant R. You can either put R in torr, or you can change the pressure to atm. I've just used the torr ideal gas constant.
481.1 torr * 29.9 L = n 62.364 LTorr/molK * 300 K
14384.89 = 18709.2n
n = <u>.7689 mol</u>
The molar mass of neon (remember that neon gas = Ne, it's not diatomic) is 20.18 g/mol from the periodic table.
.7689 mol * 20.18 g/mol = <u>15.516 g</u>