An isoelectronic series is where all of the ions listed have the same number of electrons in their atoms. When an atom has net charge of zero or neutral, it has equal number of protons and electrons. Hence, it means that the atomic number = no. of protons = no. of electrons. If these atoms become ions, they gain a net charge of + or -. Positive ions are cations. This means that they readily GIVE UP electrons, whereas negative ions (anions) readily ACCEPT electrons. So, to know which of these are isoelectronic, let's establish first the number of electron in a neutral atom from the periodic table:
Na=11; K=19; Rb=37; Cs = 55; Ca=20; S=16; Mg=12; Li=3; Be=4; B=5; C=6, Ar = 18
A. Na⁺: 11-1 = 10 electrons
K⁺: 19 - 1 = 18 electrons
Rb⁺: 37-1 = 36 electrons
B. K⁺: 19 - 1 = 18 electrons
Ca²⁺: 20 - 2 = 18 electrons
Ar: 18 electrons
S²⁻: 16 +2 = 18 electrons
C. Na⁺: 11-1 = 10 electrons
Mg²⁺: 12 - 2 = 10 electrons
S²⁻: 16 +2 = 18 electrons
D. Li=3 electrons
Be=4 electrons
B=5 electrons
C=6 electrons
The answer is letter B.
Answer:
They have properties of both metals and nonmetals
Explanation:
- Elements in the periodic table may be divided into Metals, non-metals, and metalloids.
- Metals are the elements that react by losing electrons to form stable positively charged ions known as cations. Examples are group 1, 2, and 3 elements together with transition elements.
- Non-metals are those elements that react by gaining electrons to form stable negatively charged ions called anions. Examples include oxygen, carbon, sulfur, etc.
- Metalloids, on the other hand, are elements that have both metallic and non-metallic properties.
- Metalloids occur between metals and non-metals in the periodic table. Examples include Boron and silicon among others.
If your science teacher says B, it’s probably because water has a negative and positive end, heat is just a form of energy, as other atoms can’t leave (they’re attracted to the ends) they are being insulated; but notice that ice will melt into gas (where atoms have tons of space) for other atoms to escape. Hence ice and gas aren’t ideal. (Air is a gas here.)
It’s not a 100% but hopefully it helps with some kind of analogy.
cannot be cut into smaller pieces
Answer:
Gases are more compressible
Explanation:
The particles of gases have weak forces of attraction making them move in constant random motion making them easier to compress