PV = nRT
P = (nRT)/V
P = (0.3 mol × 0.08206 atm-l/(mol-K) × (273.15 + 30) K)/(0.5 l)
P = 14.9258934 atm
Answer:
The answer to your question is pH = 2.2
Explanation:
Data
pH = ?
moles of HCl = 0.927
volume = 150 l
Process
1.- Calculate the Molar concentration of HCl
Molarity = moles / volume (L)
Molarity = 0.927 / 150
= 0.00618
2.- Calculate the pH
pH = -log [HCl]
Substitution
pH = -log [0.00618]
Result
pH = 2.2
Answer:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical equation.
Explanation:
Answer:
=> 1366.120 g/mL.
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 25 Kg
Volume (v) = 18.3 mL.
From our question, we are to determine the density (rho) of the rock.
The formula:

First let's convert 25 Kg to g;
1 Kg = 1000 g
25 Kg = ?

= 25000 g
Substitute the values into the formula:

= 1366.120 g/mL.
Therefore, the density (rho) of the rock is 1366.120 g/mL.
Since a water molecule is H2O, you would divide 126 hydrogen molecules by 2, and you would get 63. That means you have 63 double hydrogen molecules, and 58 oxygen molecules to pair up with them. So that means you could have 58 molecules of water, with 5 double hydrogen molecules, so basically 10 extra molecules of hydrogen along with the H2O molecules. Hope I helped! :)