1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MA_775_DIABLO [31]
3 years ago
10

All planets revolve around thensun in elliptical orbits. Uranus's furthest distance from the sun is approximately 3.004 x 10 km,

and its closest distance is approximately 2.749 x 10. Using this information, what is the average distance of Uranus from the sun?
Mathematics
1 answer:
boyakko [2]3 years ago
5 0
Add the two numbers 3004000000+2749000000 and divide by 2
which equals 2876500000 or 2.8765x10^9
You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Escreva a equação na forma fatorada:b²+ 5b + 6 = 0 b² + 3b + 2b + 6 = 0 b. (b + 3) + 2. (b + 3) = 0 (b + 3 ). (b + 2 ) = 0
Fantom [35]

Respuesta:

(segundo + 3) (segundo + 2) = 0

Explicación paso a paso:

Dada la expresión cuadrática b² + 5b + 6, debemos factorizarla;

b² + 5b + 6 = 0

b² + 2b + 3b + 6 = 0

b (segundo + 2) +3 (segundo + 2) = 0

(segundo + 3) (segundo + 2) = 0

Por tanto, el factor requerido es (b + 3) (b + 2) = 0

6 0
3 years ago
The length of a rectangle is 8 less than the width. The perimenter is 44 meters. Find the dimension of the rectangle
kramer

Answer:

Length = 7

Width = 15

Step-by-step explanation:

L= x

W= x-8

2x+2(x-8)=44

6 0
3 years ago
If f(x)=x²+2x then find f(2) and f(8)​
kobusy [5.1K]

Answer:

f(2) = 8, f(8) = 80

Step-by-step explanation:

f(x)=x(x+2)

f(2)=2(2+2)=2(4)=8\\f(8)=8(8+2)=8(10)=80

5 0
3 years ago
A forest ranger spots a fire from a 21-foot tower. The angle of depression from the tower to the fire is 12 degrees . To the nea
Finger [1]

Answer:

Step-by-step explanation:

98.8

7 0
3 years ago
Other questions:
  • The tickets for an upcoming concert cost $48 each. Carla wants to purchase 12 tickets for a group of friends. Carla multiplies 1
    12·2 answers
  • mary is eighteen years older than her son. she was three times as old as he was one year ago.How old are they now?
    12·1 answer
  • How would you use an inequality to show how much money you need to save per week for a pricey item?
    11·1 answer
  • Please help for a cookie ​
    9·1 answer
  • I'm not sure how to solve the systems of equations problem below
    14·1 answer
  • HELP ASAP!!! (KHAN ACADEMY...USE IMAGES)
    11·2 answers
  • What is the product of 2.7 and 1.5
    10·2 answers
  • Nancy started the year with $425 in the bank and is saving $25 each week. Sam started the year with $705 but is spending $15 a w
    5·1 answer
  • Help pls pls pls brainliest
    14·2 answers
  • What type of dilation is formed when the scale factor K is greater than one
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!