Answer:
5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.
Explanation:
Avogadro's Number or Avogadro's Constant is called the number of particles that make up a substance (usually atoms or molecules) and that can be found in the amount of one mole of said substance. Its value is 6.023*10²³ particles per mole. Avogadro's number represents a quantity without an associated physical dimension, so it is considered a pure number that allows describing a physical characteristic without an explicit dimension or unit of expression. Avogadro's number applies to any substance.
Then you can apply the following rule of three: if 1 mole of the compound contains 6.023 * 10²³ atoms, 8.3 moles of the compound how many atoms does it have?

amount of atoms≅ 5*10²⁴ atoms
<u><em>5*10²⁴ chlorine atoms are found in 8.3 moles of chlorine.</em></u>
Answer: Denver is named after James W. Denver, a governor of the Kansas Territory. It is nicknamed the Mile High City because its official elevation is exactly one mile (5280 feet or 1609.344 meters) above sea level.
Answer:
A. The pressure will increase 4 times. P₂ = 4 P₁
B. The pressure will decrease to half its value. P₂ = 0.5 P₁
C. The pressure will decrease to half its value. P₂ = 0.5 P₁
Explanation:
Initially, we have n₁ moles of a gas that occupy a volume V₁ at temperature T₁ and pressure P₁.
<em>What would happen to the gas pressure inside the cylinder if you do the following?</em>
<em />
<em>Part A: Decrease the volume to one-fourth the original volume while holding the temperature constant. Express your answer in terms of the variable P initial.</em>
V₂ = 0.25 V₁. According to Boyle's law,
P₁ . V₁ = P₂ . V₂
P₁ . V₁ = P₂ . 0.25 V₁
P₁ = P₂ . 0.25
P₂ = 4 P₁
<em>Part B: Reduce the Kelvin temperature to half its original value while holding the volume constant. Express your answer in terms of the variable P initial.</em>
T₂ = 0.5 T₁. According to Gay-Lussac's law,

<em>Part C: Reduce the amount of gas to half while keeping the volume and temperature constant. Express your answer in terms of the variable P initial.</em>
n₂ = 0.5 n₁.
P₁ in terms of the ideal gas equation is:

P₂ in terms of the ideal gas equation is:

Force = mass x gravity
Force = 20 kg x 9.8 m/s²
Force = 196 Newtons
Answer A
hope this helps!
Answer: 55.84L
Explanation: Please see attachment for explanation.