Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
The reaction of iron sulfide (FeS) with hydrochloric acid (HCl) results in the formation of ferrous chloride (FeCl2) and hydrogen sulfide (H2S) gas. The reaction can be shown as follows:
FeS (s) + HCl(aq) ---- FeCl2(s) + H2S(g)
The bubbles indicate the formation of H2S gas which is a chemical change. The formation of bubbles indicates this change as it suggests that the reactants are combing to form products i.e. it signals a chemical reaction.
Answer:
Explanation:
The first one is CrO. The Chromium has the same charge as the oxygen so mol numbers are dropped.
The Second one is CrO2 The two oxygens have a charge of 2(-2) = -4. To balance this, the Chromium must have a charge of +4 Cr(Iv)O2
The third one is can be set up like this
Cr + 3(-2) = 0
Cr - 6 = 0
Cr = 6
Therefore the formula is Cr(vi)O3
The last one is a bit tricky. Follow this carefully. There are 2 Crs and 3Os.
The formula looks like this
2Cr + 3(-2) = 0
2Cr - 6 = 0
2Cr = 6
Cr = 3
The formula is Cr(iii)2 O3
Answer:
(a): 2,300 kilograms
(b): 0.005 kilograms
(c): 2.3 × 10^-5 kilograms
(d): 155 kilograms
Explanation:
Formulas:
(a); divide the mass value by 1000
(b); divide the mass value by 1e+6
(c); divide the mass value by 1e+9
(d); multiply the mass value by 1000
Single bonds are those that bond with one atom, and sigma bonds are the strongest type of covalent bonds that are single bonded.
That means NO, not all single bonds are sigma bond, but all sigma bonds are single bonds.