Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
Answer:
The images output from your new color laser printer seem to be a little too blue. to fix this problem we need to calibrate the printer.
Explanation:
This can be done by opening the toolbox, clicking in the device setting folder their you get print quality page click on it. Under the print quality option click on the calibrate next to calibrate now. Then click OK unless when the 'your request has been sent to the device' appears on the screen. When the calibration ends again try printing. calibrating is useful for managing the proper alignment of the inkjet cartridge nozzle to the paper and each other, without proper calibration the print quality deteriorates.
Answer:
N= 238 turns
Explanation:
The induced Emf that goes through a solenoid can be calculated using the below formula;
Where ξ=induced Emf
L= self inductance
I= current
ξ= L|dⁱ/dt|
Making L which is the self inductance subject of formula we have
L=ξ/[|dⁱ|*|dt|]
The current here is changing at the rate of
.0260 A/s
L=NΦB/i
N=ξ/Φ|di|*|dt|
Magnitude of the induced Emf given= 12.6mV then if we convert to volt we have 12.6×10⁻³ V
The current I = 1.40A
Magnitude flux through the flux=/0.00285 Wb
Then if we substitute all this Value to equation above we have
N=(12.6×10⁻³ V×1.40A)/(0.00285 Wb×0.0260 A/s)
N=238turn
Therefore, there are 238turns in the solenoid