The speed of a proton after it accelerates from rest through a potential difference of 350 V is
.
Initial velocity of the proton 
Given potential difference 
let's assume that the speed of the proton is
,
Since the proton is accelerating through a potential difference, proton's potential energy will change with time. The potential energy of a particle of charge
when accelerated with a potential difference
is,

Due to Work-Energy Theorem and Conservation of Energy - <em>If there is no non-conservative force acting on a particle then loss in Potential energy P.E must be equal to gain in Kinetic Energy K.E</em> i.e

If the initial and final velocity of the proton is
and
respectively then,
change in Kinetic Energy 
change in Potential Energy 
from conservation of energy,

so, 

To read more about the conservation of energy, please go to brainly.com/question/14668053
Answer:
The density of the sample is 36 g/cm³
Explanation:
m= 972g
l=3cm
V = l³ = 3³ = 27 cm³
density = mass/volume
= 972/27
= 36 g/cm³
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
Force = (mass) x (acceleration) Newton's second law of motion.
Force = (2 kg) x (3 m/s²) = 6 newtons.
Answer:it experiences no force
Explanation:
a charge moving in a direction parallel to the magnetic field experience no force.since the angle e is 0,force would also be 0