Answer:
The Reynolds number is 5600.
Explanation:
Given that,
Density = 1400 kg/m³
Viscosity = 0.5 Pa's
Length = 2 m
Speed = 1 m/s
We need to calculate the Reynolds number
Using formula of Reynolds number

Where,
= density of fluid
v = speed of syrup
l = length of a person
=Viscosity
Put the all value into the formula


Hence, The Reynolds number is 5600.
Watt is a unit for power that is also equal to J/s. We therefore need to convert the minutes to seconds first before answering. Every minute is comprised of 60 seconds. Therefore, 3 minutes are composed of 180 seconds. Multiplying the number of seconds to the given power will give us,
Work = Power x time
= (1500 J/s) x (180 s)
= 270,000 J
Therefore, the answer is letter D.
Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
The acceleration of the satellite is 
Explanation:
The acceleration in a circular motion is defined as:
(1)
Where a is the centripetal acceleration, v the velocity and r is the radius.
The equation of the orbital velocity is defined as
(2)
Where r is the radius and T is the period
For this particular case, the radius will be the sum of the high of the satellite (
) and the Earth radius (
) :


Then, equation 2 can be used:
⇒ 


Finally equation 1 can be used:

Hence, the acceleration of the satellite is 