Answer: 65.7 gram
Explanation:
To calculate the moles :

According to stoichiometry :
1 mole of
are produced by = 2 moles of 
Thus 0.219 moles of
will be produced by =
of 
Mass of 
Thus 65.7 g of NaI, must be used to produce 55.6 g of iodine
Since the temperature
is a constant, we can use Boyle's law to solve this.<span>
<span>Boyle' law says "at a constant temperature, the
pressure of a fixed amount of an ideal gas is inversely proportional to its
volume.
P α 1/V
</span>⇒
PV = k (constant)<span>
Where, P is the pressure of the gas and V is the
volume.
<span>Here, we assume that the </span>gas in the balloon is an ideal gas.
We can use Boyle's law for these two situations as,
P</span>₁V₁ = P₂V₂<span>
P₁ = 100.0 kPa = 1 x 10⁵ Pa
V₁ =
3.3 L
P₂ =
90.0 x 10³ Pa
V₂ =?
By substitution,
1 x 10⁵ Pa x 3.3 L = 90 x 10³ Pa x V₂</span><span>
V</span>₂ = 3.7 L<span>
</span><span>Hence, the volume of gas when pressure is 90.0 kPa
is 3.7 L.</span></span>
bond in the acetic acid molecule is the most polar <span>c. c=o bond
</span>which bond in the methyl amine molecule is the most polar <span>c. n–h bond</span>
<span>Answer:
if it was planar the center of the negative forces and the center of the positive forces would be at the same place, meaning no di-poles would form so it wouldnt be polar. as it is polar it therefore cannot be planar.
the neagative center(pole) is above the the positive one due to the pair of unbonded electrons.</span>