Answer:
The answer is <em>G</em><em>a</em><em>m</em><em>m</em><em>a</em><em> </em><em>r</em><em>a</em><em>y</em><em> </em><em>.</em>
(Correct me if I am wrong)
Answer:
3.18 (w/w) %
Explanation:
In the problem, you can find mass of NaClO knowing the reaction of NaClO with Na₂S₂O₃ is:
NaClO + 2Na₂S₂O₃ + H₂O → NaCl + Na₂S₄O₆ +2NaOH + NaCl
<em>Where 1 mole of NaClO reacts with 2 moles of Na₂S₂O₃</em>
<em> </em>Moles of thiosulfate in the titration are:
0.0101L ₓ (0.042mol / L) = 4.242x10⁻⁴ moles of Na₂S₂O₃
Thus, moles of NaClO in the initial solution are:
4.242x10⁻⁴ moles of Na₂S₂O₃ ₓ (1mol NaClO / 2 mol Na₂S₂O₃) = 2.121x10⁻⁴ moles NaClO
As molar mass of NaClO is 74.44g/mol, mass of 2.121x10⁻⁴ moles are:
2.121x10⁻⁴ moles ₓ (74.44g / mol) = <em>0.0158g of NaClO</em>
As mass of bleach is 0.496g, mass percent is:
0.0158g NaClO / 0.496g bleach ₓ 100 =
<h3>3.18 (w/w) % </h3>
Answer:
4KO₂ + 2CO₂ -> 2K₂CO₃ + 3O₂
<u> Step 1: Find the moles of O₂.</u>
n(O₂) = mass/ Mr.
n(O₂) = 100 / 32 = 3.125 mol
<u>Step 2: Find the ratio between KO₂ and O₂.</u>
<u>KO₂ </u> : <u> O₂</u>
4 : 3
4/3 : 1
(4*3125)/3 : 3.125
=4.167 mol of KO₂
Thus now we know, to produce 100 g of O₂, we need 4.167mol of KO₂
<u>Step 3: Find the mass of KO₂:</u>
<u />
mass = mol * Mr. (KO₂)
Mass = 4.167* 71.1
Mass = 296.25 g
Answer:
The balanced equation is: H2 (g) +Cl2 (g) →2HCl (g)
Explanation:
Balancing chemical equation refers to balancing the stoichiometric coefficients on the reactants and products side. This must be done as the chemical equation obeys the law of conservation of mass and momentum.
The representation of a chemical reaction in the form of substances is known as a chemical equation. The equation in which the number of atoms of all the molecules is equal on both sides of the equation is known as a balanced chemical equation. The Law of conservation of mass governs the balancing of a chemical equation.
Given chemical equation
The balanced chemical equation for the hydrogen + chlorine -> Hydrogen Chloride.
H2 + Cl2 → 2HCl
The equation is balanced as on the reactants side there are two hydrogens present and the same on the products side. For chlorine as well the same thing goes two chlorine atoms on the reactants side and two on the products side.