Answer:
4 m.
Step-by-step explanation:
Length of ladder, L = 4.50 m
Base of ladder from the wall, B = x
Height of the wall, H = 2x
Using Pythagoras theorem




Height of the wall is equal to 2 x 2 = 4 m.
1.) 2
2.) 5
3.)84
4.) 4
5.) 31
6.).5
recalling that d = rt, distance = rate * time.
we know Hector is going at 12 mph, and he has already covered 18 miles, how long has he been biking already?

so Hector has been biking for those 18 miles for 3/2 of an hour, namely and hour and a half already.
then Wanda kicks in, rolling like a lightning at 16mph.
let's say the "meet" at the same distance "d" at "t" hours after Wanda entered, so that means that Wanda has been traveling for "t" hours, but Hector has been traveling for "t + (3/2)" because he had been biking before Wanda.
the distance both have travelled is the same "d" miles, reason why they "meet", same distance.
![\bf \begin{array}{lcccl} &\stackrel{miles}{distance}&\stackrel{mph}{rate}&\stackrel{hours}{time}\\ \cline{2-4}&\\ Hector&d&12&t+\frac{3}{2}\\[1em] Wanda&d&16&t \end{array}\qquad \implies \begin{cases} \boxed{d}=(12)\left( t+\frac{3}{2} \right)\\[1em] d=(16)(t) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blcccl%7D%20%26%5Cstackrel%7Bmiles%7D%7Bdistance%7D%26%5Cstackrel%7Bmph%7D%7Brate%7D%26%5Cstackrel%7Bhours%7D%7Btime%7D%5C%5C%20%5Ccline%7B2-4%7D%26%5C%5C%20Hector%26d%2612%26t%2B%5Cfrac%7B3%7D%7B2%7D%5C%5C%5B1em%5D%20Wanda%26d%2616%26t%20%5Cend%7Barray%7D%5Cqquad%20%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Cboxed%7Bd%7D%3D%2812%29%5Cleft%28%20t%2B%5Cfrac%7B3%7D%7B2%7D%20%5Cright%29%5C%5C%5B1em%5D%20d%3D%2816%29%28t%29%20%5Cend%7Bcases%7D)

Answer:
Flying Disc should be 72
Step-by-step explanation:
circumference = πd
<u>HD Coin</u> C = 3π
9.42477796077
<u>Flying Disc</u>. C = 23π
<u><em>72.2566310326</em></u>
<u><em>
</em></u><u>Jar Lid </u> C = 8π
25.1327412287
<u>Flower Pot</u> C = 15π
47.1238898038
Answer: a. 90°
Step-by-step explanation:
We know that the in a circle, the measure of an inscribed angle is half the measure of the central angle with the same intercepted arc.
In the problem∠XYZ is the inscribed angle
∠XYZ=
⇒ ∠XYZ=
Since XZ is a diameter of the circle which is a line segment, thus ∠XZ=180°
∴ ∠XYZ=
∴ ∠XYZ=
Therefore, a. 90° is the measure of ∠XYZ.