Omg. Ummm. I am pretty sure it is Shift toward the red end of the spectrum
The higher the pressure, the higher boiling point of water. At lower the pressure, the boiling point of water comes down. So, the lower pressure inreases the boiling resulting more evaporation. As we go higher in altitude, the atmospheric pressure decreases. This results in decreasing the boiling point at higher altitude and increase in boiling of water. In fact, at the sea level ,the the sea water boils at 100 degree C where atmospheric pressre is normal. However , the boiling takes place at a lower temperature at the top of a mountain due to low pressure. In other words the boling is faster at the top of a mountain than that at its foot.
Answer:
Maximum speed ( v ) = 10.4 m/s (Approx)
Explanation:
Given:
Amplitude A = 15.0 cm = 0.15 m
Frequency f = 11.0 cycles/s (Hz)
Find:
Maximum speed ( v )
Computation:
Angular frequency = 2πf
Angular frequency = 2π(11)
Angular frequency = 69.14
Maximum speed ( v ) = WA
Maximum speed ( v ) = 69.14 x 0.15
Maximum speed ( v ) = 10.371
Maximum speed ( v ) = 10.4 m/s (Approx)
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C