Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² <em>(I)</em>
Car
x = x0 + v0*t
x = 52 + 21.5t <em>(II)</em>
<em />
then we can apply <em>I = II</em>
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use <em>I</em> or <em>II</em>, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
Answer:
8.13secs
Explanation:
From the question weal are given
Height H =324m
Required
time it takes to drop t
Using the equation of motion
H = ut + 1/2gt²
Substitute the given values
324 = 0(t)+1/2(9.8)t²
324 = 1/2(9.8)t²
324 = 4.9t²
t² =324/4.9
t² = 66.12
t = √66.12
t = 8.13secs
Hence the time taken to drop is 8.13secs
Complete question:
Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength at the midpoint between the two rings ?
Answer:
The electric field strength at the mid-point between the two rings is zero.
Explanation:
Given;
diameter of each ring, d = 10 cm = 0.1 m
distance between the rings, r = 21.0 cm = 0.21 m
charge of each ring, q = 40 nC = 40 x 10⁻⁹ C
let the midpoint between the two rings = x
The electric field strength at the midpoint between the two rings is given as;

Therefore, the electric field strength at the mid-point between the two rings is zero.
The body shivers to produce energy and it uses the energy to keep it warm. The body would stop shivering when it has produced enough energy to keep it warm and the atmosphere around it has got warmer
Answer:
Torque,
Explanation:
Given that,
The loop is positioned at an angle of 30 degrees.
Current in the loop, I = 0.5 A
The magnitude of the magnetic field is 0.300 T, B = 0.3 T
We need to find the net torque about the vertical axis of the current loop due to the interaction of the current with the magnetic field. We know that the torque is given by :

Let us assume that, 
is the angle between normal and the magnetic field, 
Torque is given by :

So, the net torque about the vertical axis is
. Hence, this is the required solution.