False. Inertia and mass is not described in Newton’s second law of motion but in Newton’s first law of motion. Newton’s first law of motion or sometimes referred to as the law of inertia. In Newton’s first law indicates that an object at rest will remain at rest unless acted by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.
Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
M <span>represent mass in kg
</span><span>v represents speed in m/s
</span><span>r represents radius in m
Now, just substitute these into the formula:
</span>

<span>
</span>
Al(OH)3 = 26.98 + [(16×3) + (1.01×3)] = 26.98 + 51.03 = 78.01 and the unit will be g/mol
<h3>
<em>Al(OH)3 = 78.01 g/mol</em></h3>
In order to find total magnification of a microscope, you need to multiply the power of eyepiece and objective lens.
Hope this helps!