1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
13

All matter requires its own space. true or false

Physics
2 answers:
Charra [1.4K]3 years ago
5 0
The answer is true because everything has to have some sort of room to exist. Air, liquids, and solids have to have room to be there. It is impossible to be somewhere that has no space.
Lady_Fox [76]3 years ago
3 0
The correct answer is true
You might be interested in
A physics student throws a softball straight up into the air. The ball was in the air for a total of 3.56 s before it was caught
meriva

Answer:

The initial velocity of the softball is 14.711 meters per second.

Explanation:

This is a case of an object which experiments a free fall, that is, an uniform accelerated motion due to gravity and in which effects from air friction and Earth's rotation can be neglected.

From statement we must understand that the student threw the softball upwards and it is caught at original position 3.56 seconds later. Initial and final heights, time and gravitational acceleration are known and initial speed is unknown. The following equation of motion is used:

y = y_{o} + v_{o}\cdot t + \frac{1}{2}\cdot g \cdot t^{2} (Eq. 1)

Where:

y_{o} - Initial height of the softball, measured in meters.

y - Final height of the softball, measured in meters.

v_{o} - Initial velocity of the softball, measured in meters per second.

t - Time, measured in seconds.

g - Gravitational acceleration, measured in meters per square second.

If we know that y = y_{o}, t = 3.56\,s and g = -9.807\,\frac{m}{s^{2}}, the initial velocity of the softball is:

v_{o}\cdot (3\,s)+\frac{1}{2}\cdot (-9.807\,\frac{m}{s^{2}} )\cdot (3\,s)^{2} = 0

3\cdot v_{o} -44.132\,m= 0

v_{o} = 14.711\,\frac{m}{s}

The initial velocity of the softball is 14.711 meters per second.

8 0
3 years ago
How is velocity and instantaneous speed alike
allsm [11]
<span>velocity is defined as the rate of change of displacement irrespective of the length of the path travelled while speed is the average rate of covering distance. but in the liming case where the instantaneous velocity is given as v=dx/dt where dx is the small displacement in a small interval dt, both the speed and velocity have the same magnitude and the direction of velocity is the direction of the tangent to the corresponding displacement-time curve.</span>
5 0
3 years ago
2) A constant net force acts on an object. Describe the motion of the object.?
77julia77 [94]
Constant acceleration
7 0
2 years ago
A 6.0 kg bucket of water is raised from a well by a rope. if the upward acceleration of the bucket is 3.9 m/s2, find the force e
shutvik [7]
I'm not good with math but I think it is 23.4
8 0
3 years ago
A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and t
spin [16.1K]

Answer:

The speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.

Explanation:

We can calculate the speed of the train using the Doppler equation:

f = f_{0}\frac{v + v_{o}}{v - v_{s}}        

Where:

f₀: is the emitted frequency

f: is the frequency heard by the observer  

v: is the speed of the sound = 343 m/s

v_{o}: is the speed of the observer = 0 (it is heard in the town)

v_{s}: is the speed of the source =?

The frequency of the train before slowing down is given by:

f_{b} = f_{0}\frac{v}{v - v_{s_{b}}}  (1)                  

Now, the frequency of the train after slowing down is:

f_{a} = f_{0}\frac{v}{v - v_{s_{a}}}   (2)  

Dividing equation (1) by (2) we have:

\frac{f_{b}}{f_{a}} = \frac{f_{0}\frac{v}{v - v_{s_{b}}}}{f_{0}\frac{v}{v - v_{s_{a}}}}

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - v_{s_{b}}}   (3)  

Also, we know that the speed of the train when it is slowing down is half the initial speed so:

v_{s_{b}} = 2v_{s_{a}}     (4)

Now, by entering equation (4) into (3) we have:

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - 2v_{s_{a}}}  

\frac{300 Hz}{290 Hz} = \frac{343 m/s - v_{s_{a}}}{343 m/s - 2v_{s_{a}}}

By solving the above equation for v_{s_{a}} we can find the speed of the train after slowing down:

v_{s_{a}} = 11.06 m/s

Finally, the speed of the train before slowing down is:

v_{s_{b}} = 11.06 m/s*2 = 22.12 m/s

Therefore, the speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.                        

I hope it helps you!                                                        

7 0
2 years ago
Other questions:
  • The diameter of Mars is 6794km, and its minimum distance from the earth is 5.58×10^7 km. When Mars is at this distance, find the
    10·1 answer
  • A scientist must only base his or her conclusions on observable evidence from investigation
    13·1 answer
  • What are three tecnologies tht are used to observe things that are difficult to visit?
    5·1 answer
  • A hot iron ball of mass 200 g is cooled to a temperature of 22°C. 6.9 kJ of heat is lost to the surroundings during the process.
    12·2 answers
  • An object of mass 80 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the objec
    13·1 answer
  • A hydrogen fuel cell supplies power for a small motor. the fuel cell delivers a current of 0.5 a and a voltage of 0.43 v. what i
    6·1 answer
  • Which of these would have particles with the highest kinetic energy? Ice Water Water Vapor
    5·2 answers
  • What does the symbol 'Mg' represent?​
    13·2 answers
  • The toy car is about 3 inches long is an example of a ?
    11·1 answer
  • Which of the following is NOT an example of the 3rd law of motion (for every Action, there is an equal but opposite reaction?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!