Answer:
Explanation:
The question is one that examine the physical fundamental of mechanics of a cylindrical vessel .
We would use the Euler' equation and some coriolis and centripetal force formula.
The fig below explains it.
Answer:
Explanation:
Use the following equation:
and solve for F:
and filling in:

F = 4.0 ×
N
Answer:
λ = 6.602 x 10^(-7) m
Explanation:
In a double-slit interference experiment, the distance y of the maximum of order m from the center of the observed interference pattern on the screen is given as ;
y = mλD/d
Where;
D is the distance of the screen from the slits = 6.2 m
d is the distance between the two slits = 0.046 mm = 0.046 x 10^(-3) m
The fringes on the screen are 8.9 cm = 0.089 m apart from each other, this means that the first maximum (m=1) is located at y = 0.089 m from the center of the pattern.
Therefore, from the previous formula we can find the wavelength of the light:
y = mλD/d
So, λ = dy/mD
Thus,
λ = (0.046 x 10^(-3) x 0.089)/(1 x 6.2)
λ = 6.602 x 10^(-7) m
The options are;
a. V2 equals 2V1.
b. V2 equals (V1)/2.
c. V2 equals V1.
d. V2 equals (V1)/4.
e. V2 equals 4V1.
Answer:
Option A: V2 equals 2V1
Explanation:
Since the flow is steady, then we can say;
mass flow rate at input = mass flow rate at output.
Formula for mass flow rate is;
m' = ρVA
Thus;
At input;
m'1 = ρ1•V1•A1
At output;
m'2 = ρ2•V2•A2
So, m'1 = m'2
Now, we are told that the density of the fluid decreases to half its initial value.
Thus; ρ2 = (ρ1)/2
Since m'1 = m'2, then;
ρ1•V1•A1 = (ρ1)/2•V2•A2
Now, the pipe is uniform and thus the cross section doesn't change. Thus;
A1 = A2
We now have;
ρ1•V1•A1 = (ρ1)/2•V2•A1
A1 and ρ1 will cancel out to give;
V1 = (V2)/2
Thus, V2 = 2V1